一般而言,多孔矽結構都是使用外加電場驅動的電化學蝕刻產生。透過控制電流、電壓以及時間控制在蝕刻液中來產生所需要的多孔矽結構。本研究的特點處為不施以外加電場,純使用1064nm波長雷射和蝕刻溶液,於N型矽晶圓表面上進行氧化還原反應就可以產生多孔矽結構,而其蝕刻的現象會發生在受雷射照射以及非受雷射照射側。但透過調整蝕刻溶液的體積比例,可以控制其蝕刻現象只發生在非受雷射照射的那一側。隨著蝕刻時間的改變,蝕刻點的表面結構也會隨之變化。且透過改變蝕刻溶液的體積比例,可以改變所生成的矽奈米晶粒尺寸。根據實驗結果,這現象能用蝕刻液-半導體能障(Schottky Barrier)原理及改變方式來解釋。;In general, porous silicon structures are produced using electrochemical etching driven by electric fields. The desired porous silicon structure is generated by controlling the current, voltage, and time in the etchant. The characteristic of this study is not applied to the external electric field, only use of 1064nm wavelength laser and etchant, in the N-type silicon wafer surface redox reaction can produce porous silicon structure, and the etching phenomenon occurs not only on the laser irradiation side but also on the non-laser irradiation side. But by adjusting the volume ratio of the etchant, it can control the etching phenomenon only occurs on the side of the non-laser irradiation. When the etching time changes, the surface structure of the etching point will also change. By changing the volume ratio of the etchant, the size of the nanocrystal grains can be changed. According to the experimental results, this phenomenon can be explained by electrolyte-semiconductor barrier (Schotty barrier) theory.