中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/75028
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41250883      Online Users : 624
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/75028


    Title: 光學鏡片模具之異型水路最佳化設計;Optimization of conformal cooling channels in optical-lens molds
    Authors: 張柏揚;Chang, Po-Yang
    Contributors: 機械工程學系
    Keywords: 射出成型;雷射積層成型;異型水路;FDM演算法;RCFDM演算法;SMDS演算法;RGA演算法;最佳化;Injection moulding;Moldex3D;Conformal cooling channel;FDM;RCFDM;SMDS;RGA;Optimization;Laser additive manufacturing
    Date: 2017-07-24
    Issue Date: 2017-10-27 16:17:28 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 塑膠鏡片具有重量輕且大量生產的優點,因此大口徑非球面塑膠鏡片在光學工業上扮演重要的角色。射出成型製程是目前用於塑膠鏡片的主要生產技術,而高效率之冷卻水路則是模穴內均溫的關鍵。近年來,由於金屬積層製造技術的興起,使三維、高效率異型水路的製造得以實現,然而,異型水路的設計非常複雜,需結合最佳化分析,本研究整合有限元素分析,並透過FDM、RCFDM、SMDS、RGA等四種演算法搜尋冷卻水路配置的最佳化參數。

    依據模擬結果得知,使用FDM演算法最佳化可縮短3.92%的頂出時間,且可改善13.4%的表面溫差;使用RCFDM演算法最佳化可縮短9.14%的頂出時間,且可改善34.08%的表面溫差;使用SMDS演算法最佳化可縮短8.01%的頂出時間,且可改善32.28%的表面溫差;使用RGA演算法最佳化可縮短21.77%的頂出時間,且可改善45.5%的表面溫差。顯示本研究方法,若採用RGA最佳化異型水路為射出模具中冷卻水路之配置,對於鏡片開發時程的縮減與製造品質的提昇將能產生直接、明顯的效益。

    本研究係以Moldex3D模擬不同冷卻水路在相同的成型條件與模具配置下,因冷卻水路外觀走向不同所造成的溫度分佈、熱位移、冷卻時間、模具溫度差等結果;並且透過不同加工參數的變化調整,藉以改善塑膠光學鏡片之光學性質,達到良好的折射率並消除殘留應力與局部雙折射變異。
    ;Plastic lenses possess both light and mass-producing advantages, so the large diameter aspheric plastic lens plays an important role in the optical industry. Injection molding process is the popular technology in the plastic optical manufactures. High efficient cooling channel is the key factor of making a uniform temperature distribution in mold cavities. With the recent advent of laser additive manufacturing, fabrication of three-dimensional cooling channels, conformal cooling, becomes realizable. Still, the design of conformal cooling channels is very complex and requiring optimized analyses. This study combines the finite element analysis with four algorithms such as FDM, RCFDM, SMDS and RGA for searching the optimal parameters of cooling channel arrangement.

    According to the results of simulation, using FDM optimized analyses can shorten 3.92% of ejection time and decrease 13.4% of surface temperature difference. Using RCFDM optimized analyses can shorten 9.14% of ejection time and decrease 34.08% of surface temperature difference. Using SMDS optimized analyses can shorten 8.01% of ejection time and decrease 32.28% of surface temperature difference. Using RGA optimized analyses can shorten 21.77% of ejection time and decrease 45.5% of surface temperature difference. It shows the present study have considerable benefits on reducing the lens processing period and improving the lens manufacturing quality.

    This study simulates the temperature distribution, thermal displacement, cooling time and mold temperature difference of the different conformal cooling channels under the same processing conditions and mold configuration by Moldex3D. In order to achieve an acceptable refractive index; and eliminate the residual stress well as the local birefringence variation, the processing parameters will be adjusted to improve the optical properties of plastic optical lenses.
    Appears in Collections:[Graduate Institute of Mechanical Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML203View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明