本論文藉由將具奈米凹洞結構之「氟摻雜氧化錫」(FTO)玻璃基板應用於鈣鈦礦太陽能電池,來提高光吸收量,並增加電子傳輸層與主動層之間的接觸表面積,來提高傳遞電子的機會,進而提升電池的電流密度。 我們藉由使用Rsoft光學模擬軟體來模擬使用具奈米結構FTO基板的鈣鈦礦太陽能電池在各波長的光吸收度,結果顯示,在大部分的模擬波長範圍,使用具奈米結構FTO基板的電池的光吸收度都會比使用平面FTO基板的電池要來的高。 具奈米結構FTO基板的製作方式,是先塗佈光阻在FTO基板上,再將奈米SiO2小球鋪排於光阻上,接著以曝光顯影製作出奈米結構凹洞,最後再使用ICP蝕刻,將結構轉移到FTO層。FTO層的厚度約為600nm,凹洞直徑約為350nm,所選用的蝕刻深度分別為100nm、150nm和200nm,。 計算使用結構FTO基板所增加的表面積百分比,蝕刻深度越深的所增加的表面積越多,蝕刻深度為200nm時所增加的表面積大約為93.74%,由此可知會大幅增加抓取電子的機會。 作為對照組之使用平面FTO基板的電池其Jsc為19.27(mA/cm2),PCE為14.21%。而使用蝕刻深度為200nm的FTO基板的電池,在Voc和FF變化不大的情況下,Jsc提高到21.72(mA/cm2)。接著再以增加沉積次數的方式來調整其meso層厚度到最佳後,所量測到的Jsc增加量最高,Jsc為23.81 (mA/cm2),而PCE為17.85%,對PCE的增幅達到25.62%。 ;In this study, we applied nanopattened fluorine doped tin oxide (FTO) glass substrates to perovskite solar cells. In order to improve current density of cells by increasing of the surface area of cathode and the light harvesting by active layer. We used Rsoft optical simulation software to simulate our cells with nanopatterened FTO substrates. As the results, the light absorption of the cells using nanopatterned FTO substrates are higher than the cells using planar FTO substrates in the most range of wavelength. The method of fabricating nanopattened FTO substrates, first, was coating the FTO electrodes with photoresist, then arrayed monolayer SiO2 nano-spheres on the photoresist. After that, nanopatterns were created on photoresist by photolithography. In the end, transferring the nanopattern from photoresist to FTO by inductively coupled plasma (ICP) etching. We calculated the increasing of surface area when using nanopattened FTO substrates. The deeper etching depth are, the more increasing are. A 93.74% increasing of surface area was obtained by using 200nm-etching-depthed FTO substrate. The cell with planar FTO substrates as reference had Jsc of 19.27 mA/cm2 and PCE of 14.21%. The cell with 200nm-etching-depthed FTO substrate raised its Jsc to 21.72 mA/cm2. We further optimize the thickness of the meso layer on the patterned FTO substrates and the result showed the highest Jsc of 23.81 mA/cm2 and PCE of 17.85%, a 25.62% improvement of PCE was obtained.