太陽能產氫是有效產氫方式之一。太陽能水分解的理想材料應具有以下性質:適當的能帶邊緣位置,帶隙小,良好的電子和空穴傳輸特性,以及高的化學穩定性。對於赤礦鐵材料載子擴散距離短、導帶位置低於氫還原電位限制了該材料在光電化學催化技術中的發展應用。因此,本研究利用脈衝雷射濺鍍沉積(Pulsed-laser deposition method, PLD)製備氧化鐵奈米薄膜於FTO導電玻璃上成長氧化鐵奈米陣列薄膜,解決氧化鐵載子擴散距離短問題,提升光電流密度;液相沉積(Solution-phase deposition, SPD),在氧化鐵上沉積一層催化劑,改善表面能階位置不合適問題,降低起始電位。 本研究中,我們成功以脈衝雷射濺鍍沉積製備氧化鐵奈米薄膜,並在薄膜表面以液相沉積的方式沉積NixFe1-xOy作為Fe2O3/SnO2光陽極上的電催化劑。這方法允許我們可控制NixFe1-xOy催化劑覆蓋層的組成和厚度。其中以前驅物鎳鐵含量比為8:2製成之電極在光電流密度電性測試中性質最佳,起始電位為0.85 V (vs. RHE),在1.4 V (vs. RHE)測得的光電流密度值為0.55 mA/cm2。 ;Solar hydrogen production is one of the promising methods for hydrogen generation. In photoelectrochemical method, hydrogen is generated by using a water-splitting device composed of a photoanode and a photocathode immersed in electrolyte (KOH, H2SO4, etc). To achieve this goal efficiently, the material of photoelectrodes should have properties of appropriate band edges, small bandgap, great electron (hole) conductivity, high chemical stability and high natural abundance. Hematite has great properties of appropriate bandgap and high chemical stability, but short carrier diffusion distances and conduction band below water reduction level limit its performance. Therefore, we proposed a strategy including optimization of carrier density in hematite photoanode and modification of surface state position using pulsed laser deposition (PLD) and solution-phase deposition (SPD). The optimal samples showed the onset potential of 0.85 V (vs. RHE) and current density of 0.55 mA/cm2 at 1.4 V (vs. RHE).