本研究針對 2.4MHz 之水下聲波鑷子進行了一系列完整的設計、模擬、 製造以及實驗驗證。本研究的聲波鑷子設計主要根據菲涅爾半波帶理論、聲阻抗匹配理論和聲反射原理。然後,本研究使用有限元素法軟體模擬設計之聲波鑷子在二維平面、軸對稱和移動模型下的聲學特徵與粒子分佈。模擬結果首先證明了菲涅爾透鏡設計的成功,其次是聲波鑷子在特定位置抓取並操控粒子的可能性,最後是聲波鑷子抓取並移動粒子的可行性。聲波鑷子接下來利用光阻曝光顯影與翻模法製造,並以PZT-5H 壓電片與製造的PDMS菲涅爾薄膜組合而成。在實驗當中,聲波鑷子在水下以2.4MHz、40Vpp的弦波電壓驅動,實驗結果證明了聲波鑷子可以在靜態、不同水面反射高度和移動等不同狀況下,如同模擬所示抓取並移動 50 μm 的 PVC 粒子,這些結果將有益於未來的聲波鑷子發展與研究。;This study designs, simulates, fabricates, and verifies an acoustic tweezer operating at 2.4 MHz in the liquid. The acoustic tweezer is designed mainlyaccording to Fresnel Half-Wave Band (FHWB), acoustic impedance mismatch, and acoustic reflection theory. This study uses FEM software to simulate the acoustic characteristic and particle distribution of the acoustic tweezer in two-dimension,axisymmetric, and translation conditions. The simulation result firstly proves the success of FHWB Fresnel lens design, secondly indicatesthat the possibility to trap and manipulate the particle in several different conditions, and third the possibility to manipulate the particles in translation. The acoustic tweezer is fabricated with photolithography and replica molding method, then assembled with PZT-5H transducer and fabricated PDMS Fresnel lens membrane. In the experiment, the acoustic tweezer operates at 2.4 MHz sinusoidal signal with 40 Vpp in the water medium. The experiment shows that the acoustic tweezers could captures and manipulates the PVC particle with 50 μm in static, different water level, and translation as the simulation indicate. Those results could be beneficial to future development and research of acoustic tweezers.