探討即時電漿放射光譜(in-situ OES)的電漿診斷對於電漿輔助化學氣相沉積(PECVD)氫化奈米晶矽(nc-Si:H)薄膜的大數據分析。研究氫稀釋比(R = H_2 / 〖SiH〗_4)對沉積nc-Si:H薄膜結構和光學演變的影響,及對射頻匹配網路的原理進行了分析。對阻抗匹配網路各個零組件的功能進行了研究,結果表明,匹配網絡可以利用可變的電漿參數保持較高的射頻耦合效率,並降低反射功率。 從而建立更多監控的機台知識,包含OES及其相關的監測方法和非線性機台數據。在本文中,提出了一種基於OES監測結晶率(Crystallization rate)的健康值(Health Value)極限,用於在線方式進行機台結晶率評估檢測和診斷。已經分析和有較判斷氫化奈米晶矽(nc-Si:H)薄膜的結晶率。在這項工作中,研究偏差的方法以及包括更多降維方法與主成分分析(PCA)的結合,後一種算法被命名為結晶率健康值(Health Value)監測,並在案例研究中得到驗證。包括拉曼光譜(Raman)、傅里葉轉換紅外光譜(FTIR)、X-射線衍射光譜(XRD)。測量結果表明,通過調整氫稀釋比(R),可以誘導nc-Si:H結構演變,主要是從非晶態轉變為奈米晶態。此外使用即時電漿放射光譜(OES)電漿診斷工具來分析當氫稀釋比(R)升高而沉積速率降低時增加的結晶速率指數(H_α^* / 〖SiH〗^*)。 四極柱質譜儀(QMS)的另一電漿診斷工具(閾值電離質譜法(TIMS))也證實,〖SiH〗_x / 〖SiH〗_4密度隨著氫輸入的變化趨勢顯示〖SiH〗^*達到閥值後為主導的自由基,同時透過分析可以看出a-Si:H到nc-Si:H薄膜在消耗較高的矽甲烷自由基(〖SiH〗_x,x < 4),顯示在nc-Si:H沉積過程的轉變參數區域(R=30)密度趨勢有一個轉折點,自由基是SiH^+而非SiH_3。相對密度及氫稀釋比在(R=30-40)可以產生”最佳”氫化奈米晶矽(nc-Si:H)薄膜。 ;large-scale data analysis of Plasma Enhanced Chemical Vapor Deposition (PECVD) hydrogenated nanocrystalline germanium (nc-Si:H) thin films was investigated by plasma spectroscopy (OES) plasma diagnostics. The effect of hydrogen dilution ratio(R = H_2 / 〖SiH〗_4)on the structure and optical evolution of deposited nc-Si:H films was investigated, and the principle of RF matching network was analyzed. The function of each component of the impedance matching network is studied. The results show that the matching network can maintain high RF coupling efficiency and reduce the reflected power by using variable plasma parameters. This will create more machine knowledge that is being monitored, including OES complex and non-linear machine data. In this paper, an OES-based Crystallization Rate (Health Value) limit is proposed for on-line crystallization rate assessment testing and diagnostics. The crystallinity of the hydrogenated nanocrystalline germanium (nc-Si:H) film has been analyzed and compared. In this work, the method of bias and the combination of more dimensionality reduction methods and principal component analysis (PCA) were studied. The latter algorithm was named as Health Value and was verified in case studies. Including Raman spectroscopy (Raman), Fourier transforms infrared spectroscopy (FTIR), and X-ray diffraction spectroscopy (XRD). The measurement results show that the structural evolution of nc-Si:H can be induced by adjusting the hydrogen dilution ratio (R), mainly from the amorphous state to the nanocrystalline state. In addition, a plasma diagnostic tool using immediate plasma emission spectroscopy (OES) was used to analyze the increased crystallization rate index(H_α^* / 〖SiH〗^*) when the hydrogen dilution ratio (R) was increased and the deposition rate was decreased. Another plasma diagnostic tool for quadrupole mass spectrometry (QMS) (Threshold Ionization Mass Spectrometry (TIMS)) also confirmed that 〖SiH〗_x / 〖SiH〗_4density shows a change in hydrogen input with the trend of 〖SiH〗^* As a leading turning point, TIMS analysis of nc-Si:H film consumes higher methane methane radicals (〖SiH〗_x,x < 4), showing a turning point in the density trend in the nc-Si:H deposition process area, The free radical is SiH^* instead ofSiH_3. The relative density and hydrogen dilution ratio (R = 30-40) can produce an optima hydrogenated nanocrystalline (nc-Si:H).