中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/77979
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41248788      Online Users : 79
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/77979


    Title: 隨機奈米粒子模型應用於OLED 出光增益之研究
    Authors: 黃柏霖;Huang, Bo-Lin
    Contributors: 機械工程學系
    Keywords: OLED模擬;局域性表面電漿共振效應;隨機奈米粒子模型;OLED;LSPR;Random particle distribution
    Date: 2018-08-23
    Issue Date: 2018-08-31 15:06:15 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本研究以數值模擬及實驗驗證隨機奈米粒子模型應用於有機發光二極體(Organic Light Emitting Diode, OLED)出光增益之參數優化之研究。
    近年來,OLED成為熱門的新興節能產品, OLED具有面光源、低能耗、可撓曲、發光柔和等優點,但因開發時間較晚,OLED的發光強度與壽命尚遜於LED,若想要取代LED在市場上的地位與後續micro LED的發展衝擊,勢必要有重大的技術突破。在許多提升OLED發光強度的研究中,於OLED結構中加入奈米金屬粒子層,可引發局域性表面電漿共振效應(Localized Surface Plasmon Resonance, LSPR),進而有效且直接地提升其電致發光強度的特性。
    本研究針對LSPR應用於增益OLED發光強度進行以預測為目的之模擬研究,藉由建構粒子隨機位置分佈及隨機大小之模擬模型,模擬實際蒸鍍之金屬奈米粒子的LSPR效應;於實驗,本研究在ITO玻璃上進行銀金屬奈米粒子佈局,提升OLED元件之出光效益,並驗證模擬結果與LSPR效應於OLED元件中發光增益之趨勢。根據本研究的模擬結果,以實際量測參數建立之隨機銀奈米粒子模型,模擬引發表面電漿共振效應的吸收譜,其峰值範圍約落在480nm〜550 nm;在實驗結果證實以銀奈米粒子層引發LSPR可確實提升OLED出光之波段位於藍綠光,約1.24~1.34倍且波長峰值約藍移28nm。
    ;The purpose of this research is to analyze the localized surface plasmon resonance (LSPR) in the organic light emitting diodes (OLED) device by a random particle distribution model.
    In numerical simulation, silver particles are considered we set-up a simulate process to build a model in a random location and sizes of particles to simulate the LSPR effect on film particles based on a physical vapor deposition (PVD) case. In the experiment, we used E-gun evaporation to deposit silver nanoclusters (SNCs) on ITO/glass, to verify the emitting gain of OLED by LSPR and the accuracy of the luminous gain to compare with the simulation results.
    According to our calculated results, the difference size and distribution of the nanoparticle or the surrounding material with the higher refractive index both causes the LSPR occurrence. The LSPR effect depends on parameters such as metal type, nanostructure size, and metallic film thickness. The thickness of the silver layer and size of the SNCs could be tuned by changing the deposition time and rate. By increasing the thickness of Ag nanoparticle, the peak value of absorption cross section will be red-shift. By raising the refractive index of the surrounding media, it can also cause the peak red-shift. While increasing the particle diameters and expanding the gap between the Ag nanoparticles, the absorption peak value will become blue-shift. By adjusting the LSPR wavelength to the emitting wavelength of an OLED device, the emission intensity of the OLED can be enhanced.
    Appears in Collections:[Graduate Institute of Mechanical Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML239View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明