中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/78764
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41262175      Online Users : 111
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/78764


    Title: 結合雲端穿戴式訓練裝置之腦波人機介面-總計畫兼子計畫二:戴式腦波人機介面輔具運算電路與雲端建置;Computational Circuit and Cloud Construction for Wearable Brain Computer Interface Assistive Device
    Authors: 徐國鎧;黃琴雅
    Contributors: 國立中央大學電機工程學系
    Date: 2018-12-19
    Issue Date: 2018-12-20 13:47:23 (UTC+8)
    Publisher: 科技部
    Abstract: 本計畫將研製一套結合雲端穿戴訓練裝置之腦波人機介面行動輔具,提供行動不便的病患一個外 骨骼裝置的輔助器材,藉由判斷使用者想像運動腦波的變化,與受測者配戴的重力感測器(G-sensor) 實際運動時的訊號做事前的比對,並利用全息希爾伯特譜分析法(Holo-Hilbert Spectral Analysis, HHSA) 演算法分析腦波訊號的成分,分離其主要頻率與振幅調變(Amplitude Modulation, AM)之成分,透過演 算法的計算得到相對應的馬達控制訊號,以控制行動輔具。 本計畫開發之腦波控制機械外骨骼系統主要分成兩個階段,第一階段為腦波與動作狀態的訓練, 透過無線傳輸的方式將重力感測器的數值傳回至主要運算單元,傳輸的部分需考慮多通道的訊號間干 擾問題與空間中無縫傳輸。得到數值後,利用卷積神經網路(Convolutional Neural Network, CNN)與量 測到的腦波訊號進行比對訓練,找出對應方式。第二部分則是將想像運動的腦波訊號做為系統輸入, 經即時分析後得到輔具系統的軌跡命令,透過FPGA 同步傳給多個馬達,實現腦波人機介面行動輔具。 本計畫規劃使用可程式系統晶片(System on Chip, SoC) 結合FPGA 的系統作為控制核心,將處理器強 大的軟體功能與FPGA 靈活的硬體設計結合在一起,DSP 或MCU 負責較複雜的演算法,再利用FPGA 同步平行處理的優點,提升系統的效率。 ;This project aims to develop a Brain Computer Interface (BCI) assistive devices, EEG-controlled robotic exoskeleton system, with cloud-integrated wearable training equipment, which provides handicapped people an exoskeletal suit used in their daily life. At the beginning, we have to measure electroencephalography (EEG) signal when subject are doing imagery exercise, then compares those data with G-sensors’ signal when subject are doing real exercise. Traditionally, Hilbert-Huang Transform (HHT) is widely used for analyzing brain wave signal, however, for nonlinear processes, it can only tell the additive part. By implementing Holo-Hilbert Spectral Analysis (HHSA) algorithm, the original EEG signal can be separated into two major parts: main frequency and its amplitude modulation affected by movement or other measurement problems. This method allows developer to analyze the EEG signal precisely. Through other algorithms, the corresponding motor control signals are attained for controlling the assistive devices. The proposed project can be separated into two stages: First stage focus on data training between EEG and motions. The value of each g-sensors will transmit back to main processor through wireless way. It needs to be considered that it has interference when several channels transmit at the same time. We also aim to build seamless transmission. After having g-sensor’s value, convolutional neural network is required to train the data with EEG signal and find patterns; Second stage takes imagery exercise EEG signal as input of the system to get motors commands, which will be send to motors by FPGA. We choose SoC FPGA (System on Programmable Chip Field Programmable Gate Array) as system’s core. DSP or MCU part will in charge of some complicated algorithms. Combined with FPGA which has advantage of parallel processing, the efficiency of the system is able to increase.
    Relation: 財團法人國家實驗研究院科技政策研究與資訊中心
    Appears in Collections:[Department of Electrical Engineering] Research Project

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML157View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明