中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/81247
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41270367      Online Users : 394
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/81247


    Title: 使用多模態架構進行深度學習模型分析之研究;Using a multimodal architecture Research on Deep Learning Model Analysis
    Authors: 鄧鈺翰;Teng, Yu-Han
    Contributors: 資訊管理學系
    Keywords: 多模態深度學習;GRU;CNN;Word2Vec;Glove;注意力機制;Multimodal deep learning;GRU;CNN;Word2Vec;Glove;Attention mechanism
    Date: 2019-07-10
    Issue Date: 2019-09-03 15:40:25 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 隨著社交網路與電子商務網站的普及,使用者從被動的接收訊息轉變為主動傳播訊息,評論以及網路訊息所呈現的價值也越來越重要,過去幾年的分析研究,試圖去分析了解有關具體的輿論產品、主題、評論與推文的趨勢,在各個方面發揮著重要作用。本研究利用不同的向量化處理,對多模態分析模型進行驗證比對,確認模型可有效提升準確度。本研究提出一種由兩種模型組成之結合特徵,並將此特徵結合深度學習神經網路建構建立多模態分析模型。模型一是基於Glove向量、注意力機制與GRU神經網路架構之深度學習模型,模型二是基於Word2Vec向量、注意力機制與CNN神經網路架構之深度學習模型,多模態分析模型經由K折交叉驗證、F1測量方法進行模型驗證。實驗結果證明本研究提出之多模態分析模型,準確率高於相關研究,利用高層級多模態結合法,將多個模型的特徵取出並加以結合形成結合特徵,並將此特徵進行神經網路訓練,可使特徵集有互相輔助之效果,透過兩種向量與最佳神經網路架構並搭配多模態方法可以得到91.56%的準確率,並在模型驗證得到了93%的驗證值,證明本研究提出之多模態分析模型用於評論文本領域,可有效提升模型預測準確率,使其準確率有顯著的提升。;With the popularity of social networks and e-commerce sites, users have switched from passively receiving messages to actively disseminating messages. The value of comments and online messages is also becoming more and more important. Analysis and research over the past few years. Trying to analyze trends about specific product products, topics, reviews, and tweets. Play an important role in all aspects. This study uses different vectorization processes to verify the multimodal analysis model and confirm that the model can effectively improve the accuracy. This study proposes a combination of two models. This feature is combined with deep learning neural network construction to build a multimodal analysis model. Model 1 is a deep learning model based on Glove vector, attention mechanism and GRU neural network architecture. Model 2 is a deep learning model based on Word2Vec vector, attention mechanism and CNN neural network architecture. Multimodal analysis model is validated by K-fold cross validation and F1 measurement method. The experimental results prove that the multimodal analysis model proposed in this study has higher accuracy than related research. Using the high-level multi-modal combination method, the features of multiple models are extracted and combined to form a combined feature, and this feature is trained in neural network. The feature set can be mutually assisted, and the accuracy can be 91.56% through the two vectors and the optimal neural network architecture combined with the multi-modal method. And the model verification shows 93% verification value, which proves that the multimodal analysis model proposed in this study is used in the field of comment texts, which can effectively improve the accuracy of model prediction and improve its accuracy.
    Appears in Collections:[Graduate Institute of Information Management] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML76View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明