鋼結構系統具有良好之韌性,惟其因結構勁度較低,在側力作用下將引致較大位移,就功能設計考量而言,此將限制其應用性。為進一步提升結構設計效能,本年度計畫將整合計畫主持人近年研發之曲線消能器及前二年研擬之分段組合式隅撐設計,並將之應用於鋼結構耐震性能提升。此設計中,曲線消能器係以高延展鋼材製作,藉預先給定之偏心距,提供曲線消能器易於變形之承載機制,適當之斷面尺寸配置下,除可避免消能元件之挫屈,獲致拉壓載重下皆可穩定之承載行為,亦可藉隅撐之槓桿效應,放大曲線消能器之撓曲變形,獲得有效之能量消散行為。此設計可在大跨度構架之梁端提供大範圍之強健支撐,亦可產生穩定有效之能量消散機制,為確認變形放大曲線消能器於結構耐震性能提升之有效性,本年度將參酌先前分段組合式隅撐設計研究成果及歷年反復載重與近斷層震波加載等實證經驗,針對配置不同尺度曲線消能器之隅撐鋼結構,進行一系列反復載重與近斷層震波加載之結構試驗,藉試驗結果之整合,評估此類設計之耐震性能水準,並界定相關設計參數,以提升設計之可靠性及競爭力。 ;Steel structures possess high strength and significant ductility, thus are effective structural forms for earthquake-resistant designs. Structural designs using special moment resisting frames (SMRF) are usually considered when high ductility is required. In order to improve the seismic performance of the structures, a modified structure adopting knee braces, namely knee-braced moment resisting frame, has been proposed. This study is focused on the performance improvement of knee-braced moment frames with steel curved dampers and amplified deformation mechanisms. A series of tests on steel frames with the proposed strengthening schemes under cyclic loading and near-fault loading protocol will be conducted. Test results will be used to evaluate the frame strength, structural stiffness and the structural ductility so that the efficiency of amplified deformation steel curved dampers in seismic performance improvement can be justified.