本計畫將開發新式之低溫常壓銅對銅接合技術,此研究結合無機銅金屬之燒結與有機高分子兩個領域,成果可應用於半導體微電子構裝、高功率元件之直接覆銅技術及可撓曲之軟性基板。本計畫主軸前期利用銅離子前驅鹽所還原出的奈米銅粒子,添加不同比例的奈米錫粉、有機酸還原劑與強電子基長鏈高分子保護劑以降低接合製程溫度。初步研究顯示銅與銅(錫)膠可於200 度及常壓環境下完成接合,本計畫目標將降低燒結溫度,以改善銅與銅(錫)膠之製備參數,深入探討其電性、機械性質、微結構以及燒結機制。第一年的計畫著重於優化銅與銅(錫)膠製備條件,研究出最佳參數,同時將探討保存方法以利業界應用於實際製程。第二年將銅與銅(錫)膠應用於不同基板,並開發銅導線接合技術,測量接合後銅導線之電性及機械性質。最後一年針對銅與銅(錫)膠低溫燒結進行深入探討,此部分將會利用FIB、TEM、EBSD以及X-ray tomography等貴重儀器分析燒結微結構,並依此建立常壓低溫銅之燒結機制。 ;This project will develop Cu and Cu(Sn) pastes that can be sintered for Cu-Cu direct joints at low temperature in ambient. The essence of the project combines the knowledge of inorganic Cu and organic polymer. Cu and Cu(Sn) pastes can be applied to 3D IC interconnects, direct bonding copper for high-power device and flexible print circuit board. The principle of the idea is to sinter Cu nanoparticle by reducing organic acid. With the addition of Sn nanoparticles, a paste of these metallic particles can be fabricated. Preliminary research results indicated that the pastes can be sintered at 200 oC at ambient pressure. This project aims to lower the sintering temperature and optimize the parameters. The pastes will be applied on copper, ceramics, and flexible polymer substrates. The pastes will be applied to Cu wires in micron size. Electrical, mechanical, microstructure and sintering mechanism of the pastes will be investigated in-depth. Finally, the microstructure of the sintering processes will be studied by using FIB, TEM, EBSD and X-ray tomography, and the sintering model will be proposed.