一般電化學加工製程中,由於加工電極尺寸較大,相對可採用較厚的絕緣層加以隔離電場效應,常用的絕緣材料如陶瓷、工程塑膠、玻璃纖維及其他複合材料等,以套合、鑲嵌、鎖固、塗佈或膠合等技術加以結合應用。然而,一般電化學鑽孔加工藉以獲得較佳的形狀精度,而加工所需的電解液的更新及流動方向,與電極及表面的平滑度以精度有高度關係。有鑑於精密電化學加工時,電流雜散腐蝕與二次加工將會大大影響加工精密度,再加上電極需精細切尺寸要求極高,最有效的方法就是陰極表面上披覆一高精密度、厚度薄、附著力佳且耐腐蝕性好的絕緣材料才能使電流欲從加工處精確釋出以降低雜散電解效果, 期望可大幅提升加工精度及效率,提高硬度與耐磨性及具有良好的熱穩定性之覆層,達到產業應用需求,促進產業技術升級。 ;Electrochemical machining (ECM) has been increasingly recognized for micromachining of various parts. An Insulation coating process to erode a hole of hundreds of micrometers on a flow valve is analyzed in this paper. To enhance the controllability of the coating process, a model describing the relationship between the machining parameters and the produced hole profile is needed. The controlled factors include the gap between the electrode and workpiece, electrical voltage, the concentration of the electrolyte, machining time and electrode diameter. The experimental parameters are the electrical current, flow rate of the electrolyte, temperature and thickness of the workpiece. It is expected to greatly improve the processing accuracy and efficiency, improve the hardness and wear resistance and the coating with good thermal stability, meet the industrial application requirements, and promote the industrial technology upgrade.