本論文目的為完成一套穿戴式外骨骼裝置硬體架設,此裝置主要分為機構與驅動系統兩大主體結構,機構設計著重在穿戴是外骨骼裝置設計,而驅動系統則為整合選用控制器、伺服控制器、自製周邊電路板,進行馬達的轉速控制,建立安全機構設計與馬達轉速控制迴路。 本論文在機構設計方面加入快速拆裝、彈性可調整之構思。透過鋁擠形組裝的上半身支架及下半身支架,使預期加工時間及加工難度可以降低,並且同時能達到相當大的承受力;肩關節馬達座及髖關節馬達座則使用相同之設計構想,因此兩者可相互交替組裝,充分表現本次快速拆裝之特性,且肘關節馬達座及膝關節馬達座意欲前者有相同特性;另外,馬達與機件之配合方式,有別於傳統聯軸器之組裝,本期計畫選用TSUBAKI KE系列之免鍵縮套組合,可大幅增加馬達轉動軸之壽命,組裝時亦相較快速安全。經由ANSYS模擬分析結果可知各部件受力情形,並成功完成加工。 驅動系統方面,透過TMS320F28335 數位訊號處理器、自製周邊電路板、以及Maxon ESCON伺服控制器結合,實現轉速控制。並選用TI公司生產的MC3486N IC完成編碼器解碼,未來可透過將解碼訊號輸入TMS320F28335 數位訊號處理器之正交編碼器脈衝(QEP)模組以計算轉子位置。 ;The purpose of the research is to complete a set of wearable exoskeleton device setup. This device is mainly divided into two part, including mechanism and driving system. The part of mechanism design focuses on the design of the wearable exoskeleton device. And the part of driving system is integrated by controller, servo controller, and self-made peripheral circuit board. The driving system will achieve the speed control of the motor and establish a safety mechanism design with motor speed control loop. In the research, the concept of quick disassembly and flexible adjustment is added to the mechanism design. The upper body bracket and lower body bracket are assembled by aluminum extrusion to reduce the expected machining time and difficulty. At the same time, the mechanism design will achieve a considerable force. The shoulder joint motor seat and the hip joint motor seat of the design use the same concept, so they can be assembled alternately. And demonstrate fully the characteristics of this quick disassembly and assembly. The elbow joint motor seat and the knee joint motor seat are intended to have the same characteristics as the former. In addition, the combination of the motor and the component is different from the assembly of the traditional coupling. The TUBBAKI KE series of keyless sleeves are used in this project to greatly increase the lifespan of the motor′s rotating shaft. It is also relatively fast and safe to assemble. Through the simulation results of ANSYS, it can be known that the force of each component has higher load capacity, and the machining is successfully completed. In terms of driving system, the speed control is realized through the combination of TMS320F28335 digital signal controller, self-made peripheral circuit board, and Maxon ESCON servo controller. And choose the MC3486N IC that produced by TI to complete the encoder decoding. In the future, the rotor position can be calculated by inputting the decoded signal into the quadrature encoder pulse (QEP) module of the TMS320F28335 digital signal processor.