城市交通日漸繁忙,事故發生機率亦隨之上升,過去有許多研究應用機器學習演算法,預測未來交通事故熱區、車流量或平均車速,然而多數的研究著重於如何提出新穎的機器學習架構。本論文的研究是以桃園市部分行政區為實驗場域,於各行政區取道路較密集的區域,每區域約16 平方公里,利用經典機器學習模型:CNN 與LSTM 組合訓練模型,分析在何種CNN-LSTM 層數組合下,能夠以較低的訓練成本,得到準確率較高的模型組合。;Urban traffic is getting busy, and the probability of accidents is also rising. In the past, many studies applied machine learning algorithms to predict hot spots of traffic accidents, traffic flow, or average speed. However, most of the research focused on how to propose novel machine learning architectures. The study in this thesis uses some regions of Taoyuan City as experimental fields. By taking dense road areas in these regions, each area is about 16 square kilometers. This study uses the classic machine learning model: Convolution Neural Network(CNN) and Long Short-Term Memory(LSTM). In sensitivity to varied number of CNN-LSTM layers, this study examines the performance of higher accuracy and lower training cost.