English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41277692      線上人數 : 144
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/84002


    題名: 運用卷積神經網路偵測網站頁面異常研究;Detecting Abnormal Website Pages by Convolutional Neural Networks
    作者: 賴之康;Lai, Chih-Kang
    貢獻者: 資訊管理學系
    關鍵詞: 網頁;跑版;影像辨識;深度學習;卷積神經網路;web;web page;Abnormal Website;Image recognition;deep learning;CNN
    日期: 2020-07-10
    上傳時間: 2020-09-02 17:53:15 (UTC+8)
    出版者: 國立中央大學
    摘要: 現代的人,使用電腦或行動裝置上網已經是每天習慣要做的事,瀏覽的網站從一般的內容型網站、社群網站、影音媒體網站到電子商務型網站都有,應該有人碰過,進到某個網站就發現頁面錯誤或是呈現的網頁內容是壞掉的,可能少了一張圖片、圖片與文字對不起來或是某個區塊跑到了不該出現的地方,這樣的狀況在業界稱之為跑版;相信建置網站的開發團隊都極不願意把這些跑版的資訊呈現在使用者的眼前,這樣不僅可能會流失網站的流量,最重要的是讓自己網站的品質受到了質疑與傷害;本研究主要在探討使用圖片/影像辯識的方法,對網站頁面轉成的圖片進行辨識是否有跑版的問題發生;實驗中使用深度學習在影像辨識領域表現得最好的卷積神經網路演算法,搭配圖片數量、圖片尺寸、訓練回合數、卷積層數等變因進行訓練,根據本研究實驗得到的結果顯示,若各變因有適當的
    調整,則所獲得的準確率及混淆矩陣分類正確性都會獲得良好的改善。;Modern people, using computers or mobile devices to surf the Internet is a habit
    to do every day. The websites browsed are from general content sites, community sites,
    video sites to e-commerce sites. In some cases, when we visit a website, some webpage
    layout is incorrect or the content of the presented webpage is broken. There may be a
    missing picture, image and non-matched text, or a content block has moved to a place
    where it should not appear. This situation is called "broken layout" within the industry.
    It is true that the development team that built the website is very reluctant to show
    the "broken layout" to end users, so that not only may the website traffic be lost, but
    also the degradation for the quality of the website. Users would have doubt about the
    quality and hurt brand.
    This research is mainly to explore the method of using image identification to
    identify whether the image converted from the website page has a "broken layout"
    problem; deep learning is used in the experiment since it performs well in the field of
    image identification. The neural network algorithm is trained with different factors such
    as the number of training pictures, the size of the pictures, the number of training
    iterations, and the number of convolutional layers. According to the results of this
    research, if the various factors are adjusted appropriately, the accuracy rate obtained
    and the confusion matrix classification accuracy will be improved.
    顯示於類別:[資訊管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML120檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明