中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/84927
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41250654      Online Users : 398
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/84927


    Title: 中藥單方的適應症與其於中藥複方中的重要性之間的關係;Relationship between Al predictions and roles in classical formulas of individual TCM herbs
    Authors: ?玉;Nhu, Huynh Ngoc Quynh
    Contributors: 生醫科學與工程學系
    Keywords: 人工智慧;卷積神經網絡;中藥單方;中藥複方;artificial intelligence;CNN;Chinese single herb;Chinese medicine formula
    Date: 2021-01-25
    Issue Date: 2021-03-18 16:52:53 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 人工智慧(或深度學習)自其復興和成熟以來,改變了許多生物醫學研究,甚至在五年前(2016至今)對相關研究的發展更加迅速。我們提議將應用在西藥的最先進深度學習技術擴展至中藥領域。因此,我們開發了卷積神經網絡(CNN)將中藥處方分類為對應的疾病。經過CNN訓練後,使用了來自國家衛生局保險數據庫中的報銷數據,CNN輸出以下內容的概率(稱為AI分數)對應給定輸入中草藥治療的疾病。為了更好地理解CNN的輸出以及中藥從多種草藥中合成配方的方式,我們從數百種中藥配方裡計算每個藥草的平均比例權重(稱為重要性分數)。結果顯示,AI分數和重要性分數之間的相關性表明中藥配方裡的藥草組合公式並非簡單加法(即線性)。;Artificial intelligence (or deep learning) has accelerated and even transformed many of the biomedical research since its resurgence and maturity five years ago (around 2016). We propose to extend applications of state-of-the-art deep learning techniques to traditional Chinese medicine (TCM) from modern western medicine. In doing so, we developed a convolutional neural network (CNN) to classify TCM herbal prescriptions into their corresponding diseases. After CNN training using reimbursement data from the National Health Insurance Database, the CNN outputs probabilities (called AI scores) of the indicated diseases given an input TCM herb. To make better sense of the CNN outputs and the way TCM composes formulas from multiple herbs, we then calculated the average proportional weight (called importance score) of an individual herb in hundreds of TCM formulas found in TCM classics. The result of correlation between AI scores and importance scores indicates that the functions of TCM formulas are not simple linear addition of individual herbs.
    Appears in Collections:[Institute of Biomedical Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML146View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明