中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/84953
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41267827      Online Users : 97
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/84953


    Title: 雷射誘導背向活化結合無電鍍應用於玻璃基板之選擇性金屬化;Combining Laser-induced Backside Activation and Electroless Deposition for Selective Metallization on Glass Substrate
    Authors: 馮稟傑;Feng, Bing-Jie
    Contributors: 光機電工程研究所
    Keywords: 銅基金屬有機分解墨水;雷射活化;無電鍍銅沉積;copper-based MOD ink;laser activation;electroless copper deposition
    Date: 2021-01-26
    Issue Date: 2021-03-18 17:02:11 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 由於在工業領域中對於玻璃基板上之導電金屬圖案的需求不斷增長,並且金屬材料與玻璃基板表面之間的附著性容易受到限制,因此本研究旨在透過結合雷射誘導背面活化與後續無電鍍沉積的方法來發展一選擇性金屬化技術,從而在玻璃基板上製作具有微米尺度的可靠導電路徑。

    銅金屬材料因其出色的導電性和成本效益而被選作為雷射活化和無電鍍沉積的金屬來源。自合成的銅基金屬有機分解(MOD)墨水可熱還原為銅原子作為金屬種子源,並在雷射掃描策略下沿定義的路徑進一步誘發活化區域。在玻璃基板上製造的活化路徑顯現出低於表面粗糙度100 nm 粗糙表面,且具有分散的銅種子緊附在其上,因此無需對基板表面進行一般無電鍍方法中所使用的敏化及活化步驟,沿著雷射活化路徑製造出
    的特殊表面性質即可通過浸入無電鍍銅浴中進行選擇性的銅沉積。

    在各種不同的雷射通量(0.12, 0.18, 0.26, 0.34, 0.42 及0.51 J/cm2)和掃描速度(5, 7.5 及10 mm/s)在內的加工參數組合,具有較高雷射通量或較低掃描速度所製造的活化路徑在經相同的無電鍍銅沉積步驟後,對於導電路徑的形成有較佳的影響,此外,銅導電路徑的形態和電性有顯著差異。實驗結果表明,所製造的銅導電路徑其最低電阻率約為 3.5倍的塊材銅,路徑寬度約略等於聚焦雷射光斑尺寸為34μm,表面粗糙度為42 nm,並且可以承受超聲波振動測試和剝離測試。;Due to the increasing demand for conductive metal patterns on glass substrate in the industrial field and the adhesion between the metal materials and the surface of glass substrate is prone to be limited, therefore, this study aims to develop a selective metallization technique by combining laser-induced backside activation and subsequent electroless deposition to make a reliable conductive path with micrometer scale on glass substrate.

    Copper material is chosen as the metal source for laser activation and electroless deposition due to its excellent electrical conductivity and cost-effectiveness. The self-synthesized copper-based metal organic decomposition (MOD) ink can be thermally reduced to copper atoms as the metal seed source, and further induces the activated-area along the defined path under the laser scanning strategy. The activated-path fabricated on glass substrate exhibits rough surface with surface roughness lower than 100 nm and scattered copper seed tightly sticking on it. Therefore, the substrate surface does not need to be subjected to the sensitization and activation steps used in the general electroless plating method, and the unique surface properties produced along the laser-induced activated-path can be immersed into electroless copper bath for selective copper deposition.

    Under various sets of laser fluence (0.12, 0.18, 0.26, 0.34, 0.42, and 0.51 J/cm2) and scanning speed (5, 7.5, and 10 mm/s), activated-path with higher laser fluence or lower scanning speed can have a better effect on formation of copper conductive path after the same electroless copper deposition process. Furthermore, the morphologies and electrical properties of copper conductive path are significant difference. The experimental results show that the lowest resistivity of the fabricated copper conductive path is roughly 3.5 times than that of bulk copper, the path width equals to that of the focused laser spot size is approximately 34 μm, the surface roughness is 42 nm, and it can withstand ultrasonic vibration test and peel-off test.
    Appears in Collections:[Graduate Institute of opto-Mechatronics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML178View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明