科技的快速成長使人們生活品質 改善許多,醫療方面也因如此 在檢測設備及生醫技術 正在 蓬勃發展中, 也隨著半導體產業的興起, 半導體物理 應用於 生醫檢測技術可說是一大熱門研究議題。 表面增 強拉曼散射 surface-enhanced Raman scattering, SERS 可大幅增強 分 子的拉 曼散射訊號, 且具快速、高精確性,讓它 成為在分子檢測時 最普遍的工具。在本研究中,我們利用有機金屬化學氣相沉積法 (metal-organic chemical vapor deposition, MOCVD)成長氮化銦鎵奈米 量子井, 並在表面製作金 奈米顆粒,藉以誘發局部 表面電漿效應 localized surface plasmon resonance LSPR),並透過 rhodamine6G R6G)、 crystal violet(CV)螢光分子所產生的拉曼訊號, 來分析此 氮化物基板檢測單分子 的能力。 為了量到微弱的單分子訊號,我們執行一系列的製程優化,包括 金屬種類 、 金屬厚度、退火 溫度等等。 這些製程條件的優化,是為了提升基板表面的 LSPR和 電荷轉移共振 (charge transfer resonance, CTR)的強度。 我們 發現 以 厚 度 33nm的金 、 用爐管 700 維持 2小時 的退火溫度 ,可得到最強的 SERS訊號。 以氮化銦鎵奈米量子井形成的SERS基板,在單分子檢測的統計結果上,也呈現文獻報導 迥然不同 的趨勢 。;The rapid growth of science and technology has greatly improved the quality of people’s lives. In the medical field, inspective equipment and biomedical technology are booming. With the rise of the semiconductor industry, the application of semiconductor physics to biomedical inspective technology has drawn much research attention. Surface- enhanced Raman scattering (SERS) can greatly enhance the Raman signal of molecules, and is regarded as a promising biosensor because of its high speed and sensitivity capabilities. In this research, metal-organic chemical vapor deposition (MOCVD) was used to grow InGaN nano-quantum wells. Metal nano-particles were then prepared on the epitaxial surface to induce the localized surface plasmon resonance (LSPR). To evaluate SERS performances, rhodamine6G R6G) and crystal violet(CV) fluorescent molecules were adopted as the analytes. For single-molecule detection, nanoparticle fabrication conditions, including metal selection, metal thickness and annealing temperature were optimized. It is found that Au nanoparticles, attained by 3-nm thick Au and 2-hr annealing at 700 ℃, can deliver a single-molecule statistics different from that in the literatures . Mechanisms for the unusual finding will be provided.