隨著無線通訊技術的進步,5G已經開始蓬勃發展,並期望能應用在物聯網與車用電子甚至是遠端手術等,對於資料的傳輸速度以及資料量的需求越來越高。因此我們希望能開發出符合此需求的收發機,並且完成實際的應用。為了實現高傳輸速度與高資料量的收發機模組,透過多路平行處理架構同時處理多筆資料,以硬體資源提高資料處理速度,最終利用FPGA實現實際的訊號收發。 在本論文中,我們設計收發機硬體架構並以Verilog硬體描述語言實現,收發機規格參考LTE DownLink架構下的OFDM調變系統,並搭配上DVB-T架構之通道編解碼規格進行修改與擴充。以上述規格開發出傳輸速度與資料量高的可靠收發機模組,並在RFSoC平台實現與使用號角天線及升降頻模組達成毫米波段之收發,最後展示其在中頻與毫米波段不同通道下的結果。 本論文另一重點是RFSoC與毫米波升降頻器開發板的使用,簡單講述如何利用PYNQ開發RFSoC並且實現RFSoC與電腦間的資料傳輸,還有RFSoC內各項基本矽智財的使用與其參數說明及設定,以及毫米波升降頻器開發板的使用與參數設定。 ;With the advancement of wireless communication technology, 5G has begun to flourish, and it is expected to be applied to the Internet of Things, automotive electronics and even remote surgery. The demand for transmission speed and data quantity is getting higher and higher. In order to achieve high transmission speed and high data quantity, we use parallel processing architecture to process multiple data at the same time. Increase data processing spend by hardware resources. Finally, complete the actual signal sending and receiving by FPGA. Designed with Verilog hardware description language in the hardware. The transceiver module refers to the OFDM modulation system under the LTE DownLink architecture along with the channel decoding specification under the DVB-T architecture to modify and expand. Develop the reliable transceiver module with high transmission speed and large data quantity, and finally completed it on the RFSoC platform. Use up/down converter and horn antenna to achieve transmission in the millimeter wave band. Eventually show the result of the IF and millimeter wave bands. Another focus of this thesis is the use of RFSoC and millimeter wave frequency converter development board. Briefly describe how to use PYNQ to develop RFSoC and achieve data transmission between RFSoC and computer. Descript the parameters and settings of basic silicon intellectual property of RFSoC and the settings of millimeter wave frequency converter development board.