English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41262296      線上人數 : 216
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/86445


    題名: 基於空間特徵與摺積神經網路於 H.266/FVC 視訊畫面內編碼快速分割決策;Fast Partition Decision for H.266/FVC Video Intra Coding Based on Spatial Features and CNNs
    作者: 涂育良;Tu, Yu-Liang
    貢獻者: 通訊工程學系
    關鍵詞: 未來視訊壓縮編碼;編碼單位;畫面內編碼;分區預測;摺積神經網路;空間特徵;Future Video Coding (FVC);Coding Unit (CU);Intra Coding;Partition Prediction;Convolutional Neural Network (CNN);Spatial Feature
    日期: 2021-09-16
    上傳時間: 2021-12-07 12:50:47 (UTC+8)
    出版者: 國立中央大學
    摘要: 跟隨著網路和多媒體的科技迅速成長,我們人類平日生活的高解析度視訊重要性一日千里,最近市面已出現許多 4K 高解析度的視訊,可以看見未來高解析度視頻勢必會成為主流,而目前的最新視頻壓縮標準 H.265/HEVC 已經逐漸不夠能用,因此ITU-T VCEG 和 ISO/IEC MPEG 共同組成的JVET (Joint Video Exploration Team) 來制定新一代的視訊壓縮標準 H.266/FVC (Future Video Coding),從2015年開始討論,且預計2021年正式發佈變國際視訊壓縮標準。
    H.266/FVC與H.265/HEVC相比不僅採用了QT(QuadTree)且還新增了BT(Binary Tree),不但將複雜的CU、PU和TU的組成元素除去,且能夠支援最大256x256到最小8x8的正方形區塊,以依據更多不同大小畫面的紋理特性編碼。QTBT的架構雖比QT提供更好的編碼效能,但其預測數量的增加造成在執行畫面編碼時間提高了5.6倍,於是針對畫面內編碼,如何發展增快CU編碼時間下的決策,這是非常重要的議題。
    本論文結合近年十分熱門的人工智慧系統 (Artificial Intelligence, AI),提出基於空間特徵與摺積神經網路於 H.266/FVC視訊畫面內編碼快速分割決策。主要分為兩部分探討:首先在第一部份如何使用空間特徵來分析紋理特徵,以來決策是否切割與減少CNN使用次數;在第二部份則是針對預測模型的訓練和訓練資料的選擇來討論,再將訓練好的預測模型結合至 H.266/FVC 壓縮參考軟體當中來執行編碼。;With the rapid growth of Internet and multimedia technology, the high-resolution video of our daily lives is becoming important. Recently, there have been many 4K high-resolution videos on the market. It can be expected that high-resolution video will become the mainstream in the future. However, the video compression standard H.265/HEVC has gradually become insufficient. Therefore, the JVET (Joint Video Exploration Team) consist of ITU-T VCEG and ISO/IEC MPEG has developed a new generation of the video compression standard H.266/ FVC (Future Video Coding). JVET is expected to be officially released in 2021 to become an international video compression standard. H.266/FVC is different from H.265/HEVC, it uses QT (QuadTree), adds QTBT (QuadTree plus Binary Tree), and removes the complex elements of CU, PU, and TU. H.266/FVC codes according to the texture characteristics of more pictures of different sizes. Although the QTBT architecture provides better coding performance than QT. Therefore, for intra-picture coding, how to develop decision-making under CU coding time is very important.
    This thesis uses the Artificial Intelligence (AI) system, and proposes a fast partition prediction and decision-making method based on the convolutional neural network in the H.266/FVC video coding frame. The discussion is mainly divided into two parts: First, using spatial features to analyze texture features is to decide whether to cut and reduce the number of CNN usage. Secondly, discussing the training of the prediction model and the selection of training data, and then combine the trained prediction model with H.266/FVC to perform encoding.
    顯示於類別:[通訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML96檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明