中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/86572
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41268980      在线人数 : 291
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/86572


    题名: 深度學習技術於類別不平衡問題之應用;Deep Learning for the Class Imbalance Problem
    作者: ?玟榛;Huang, Wen-Zhen
    贡献者: 資訊管理學系
    关键词: 類別不平衡;資料探勘;機器學習;深度學習;增加少數法;Class Imbalance;Data Mining;Machine Learning;Deep learning;Over-sampling
    日期: 2021-07-15
    上传时间: 2021-12-07 12:59:09 (UTC+8)
    出版者: 國立中央大學
    摘要: 在資料探勘領域中,如何針對有類別不平衡問題(Class imbalance problem)的資
    料集進行有效的分類一直是一個非常重要的議題,類別不平衡問題指的是當資料集某
    一類別樣本數量遠大於另一類別的樣本數量時,會導致在建立模型時,資料的偏態分
    布造成模型會傾向於將小類資料(Minority class)誤判為大類資料(Majority class),
    使得小類資料經常被忽略。由於類別不平衡問題經常存在於許多實際應用上,如故障
    診斷(Fault diagnosis)、醫學診斷(Medical diagnosis)、盜刷偵測(Fraud detection)
    等等,因此近十年來,有許多學者致力於研究處理類別不平衡問題的方法。在過往文
    獻中,類別不平衡的處理方法大致分為三種層面,包含演算法層面、資料層面以及成
    本敏感法等,而以往資料層面相關文獻當中,大多為使用資料前處理方式搭配機器學
    習技術所建構的分類器來處理類別不平衡問題。而隨著近年來深度學習技術的普及,
    為資料探勘研究帶來了新的可能性,然而,目前卻鮮少有人嘗試使用深度學習技術所
    建構之分類器應用在類別不平衡資料集中,因此本論文欲使用深度學習技術所建構之
    分類器,搭配資料前處理的 SMOTE 方法(Synthetic minority over-sampling technique)
    來處理類別不平衡問題,以探討深度學習技術所建構之分類器效果是否能夠優於傳統
    機器學習技術所建構之分類器。
    本研究使用 44 個來自 KEEL 網站上的二元類別不平衡資料集,以及 8 個 NASA 資
    料集。首先進行資料的前處理,並搭配兩種深度學習模型(D-MLP、DBN)進行訓練
    以及測試,計算出 AUC 結果後與過往文獻之方法進行正確率比較。
    從本實驗結果而言,整體來說使用資料層級方法搭配深度學習分類器 D-MLP 和
    DBN 效果會比機器學習技術所建構之分類器效能較佳,若將資料集區分為高低類別不
    平衡資料集時,在高類別不平衡比率的情況下,DBN 會擁有更佳的表現,若不考慮類
    別不平衡比率,則是 D-MLP 擁有整體較佳的表現。;Effective classification for class imbalance datasets is always an important issue of data
    mining. The class imbalance problem means when the number of samples in one class
    outnumbers the other classes in a dataset. The learning model will tend to misclassify the
    minority class into the majority class because of the skewed class distribution. Due to the class
    imbalance problem occurs in many real-world applications, for example, fault diagnosis,
    medical diagnosis, fraud detection and so on, there are many researchers committed to the
    methods to handle the class imbalance datasets in past decades. In the literatures, the class
    imbalance problem can be solved from three different ways, including algorithm level methods,
    data level methods and cost-sensitive methods. Particularly, data level methods are widely
    considered, such as under- and over-sampling techniques. In recent years, deep learning
    techniques have demonstrated their outperformances over many machine learning techniques.
    However, very few studies examine their applicability on class imbalance datasets. Therefore,
    the research objective is to perform SMOTE as the over-sampling method to re-balance the
    class imbalance datasets and then construct the deep learning models for performance
    comparison. In this research, 44 class imbalanced datasets collected from the KEEL dataset
    repository and 8 datasets from NASA are used for the experiment. In addition, the deep neural
    networks including deep multilayer perceptron (D-MLP) and deep belief network (DBN) are
    compared with some representative baseline learning models. The experimental results show
    that SMOTE combining with deep learning classifiers perform better than traditional machine
    learning classifiers. In particular, the DBN classifier performs better than others for the datasets
    with high imbalance ratios, whereas the D-MLP classifier has an overall better performance
    than the other classifiers.
    显示于类别:[資訊管理研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML56检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明