中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/86576
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41268974      Online Users : 287
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/86576


    Title: A Bi-Phase LSTM Architecture on Dynamic Social Network Prediction
    Authors: 蘇恆毅;Su, Heng-Yi
    Contributors: 資訊管理學系
    Keywords: 特徵擷取;長短期記憶網路;動態社交網路;Feature Extraction;Long Short-Term Memory;Dynamic Social Network
    Date: 2021-07-20
    Issue Date: 2021-12-07 12:59:26 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 近年來社群網路非常流行,大部分的人都有參與社群網路,社群網路中藏有
    非常豐富的資訊,像是價值觀、興趣等。我們可以透過社群網路的互動關係來了
    解哪些使用者比較親近,進而推薦使用者未來可能的好友。然而由於時間的演變,
    以前可能是好友的友誼關係可能改變了,我們認為社交網路也是會演變的。因此
    我們利用 BP-LSTM auto-encoder 和 BP-LSTM predictor,將動態網路圖的特徵保
    留起來並用來預測下一個時間點的社交網路圖。我們在三個資料集中評估模型,
    並且與不同的模型比較預測結果,實驗結果顯示 BP-LSTM 在三個資料集中都有
    相當優秀的表現。最後我們對我們的模型進行參數調整,以達到最佳的預測結果。
    ;Social networks have become very popular in recent years. Most people participate
    in social networks. The social network contains a wealth of information, such as values
    and interests. We can learn about those users who are close to each other through the
    interaction of social networks, and then recommend users who may be friends in the
    future. However, due to the evolution of time, the friendship that may have been friends
    may have changed, and we believe that social networks will also evolve. Therefore, we
    use BP-LSTM auto-encoder and BP-LSTM predictor to retain the features of the
    dynamic network graphs and use it to predict the social network graph at the next point
    in time. We evaluated the model in three datasets and compared the prediction results
    with different models. The experimental results showed that BP-LSTM performed quite
    well in the three data sets. Finally, we adjust the parameters of our model to achieve
    the best prediction results.
    Appears in Collections:[Graduate Institute of Information Management] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML53View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明