摘要: | 第五代行動通訊(5G) 網路的來臨,將提供更大的資料量、更高 的傳輸速率、更短的延遲(latency) ,並可支援更多的通訊裝置連線, 為達到次世代(next-generation) 行動通訊系統的願景[1] ,不論是在 實體層、媒體存取控制層、網路層、或應用層,都需要更先進的技 術。 在本論文中,我們將設計sub-6 GHz 以及毫米波頻段之功率 放大器,分別使用WIN 0.25-?m GaN HEMT (high electron mobility transistor) 製程及WIN 0.15-?m GaAs pHEMT (pseudomorphic high electron mobility transistor) 製程來實現。在本論文第二章中,我們使 用WIN 0.25-?m GaN HEMT 製程來設計一應用於5G 小型基地台之 3.5-GHz AB 類功率放大器,操作頻率範圍為3.3 GHz 至3.8 GHz 。 量測結果顯示其小訊號在3.3 3.8 GHz 的操作頻率範圍內,增益及輸 入返回損耗分別大於10.2 dB 及12.6 dB ,且大訊號在3.5 GHz 下, OP1dB 及在OP1dB 下的PAE 分別為33.1 dBm (2W) 及44.4% ,量測 結果都有符合應用於5G 小型基地台發射端主動式相位陣列之功率放 大器性能目標。 在本論文第三章中,我們同樣使用WIN 0.25-?m GaN HEMT 製 程來設計一應用於5G 小型基地台之3.5-GHz 功率合成放大器,操 作頻率範圍為3.3 GHz 至3.8 GHz ,且經由上一章節電路的偵錯對 此電路進行優化。本電路是由兩路單級功率放大器藉由impedance transforming Wilkinson 架構之功率分配器及功率結合器做功率結合之 功率合成放大器, impedance transforming Wilkinson 之功率分配器 及功率結合器我們使用o chip 的方式實現,使用FR4 高頻兩層板製 作,最終利用鎊線的方式與功率放大器做連結。由於o chip 阻抗轉 換威爾金森功率分配器及結合器尚未與本章電路晶片做組裝量測,因 此我們先量測本電路之單路功率放大器,量測結果顯示其單路功率放 大器小訊號在3.3 3.8 GHz 的操作頻率範圍內,其增益及輸入返回損 耗分別大於14 dB 及9.7 dB ,而大訊號在3.5 GHz 下, OP1dB 及在 OP1dB 下的PAE 分別為24.8 dBm (2W) 及16.6% ,我們懷疑是因為 量測時較大的輸入功率使晶片過熱以及量測晶片時散熱處理較為不佳 所造成的,其OP1dB 及PAE 沒有預期的理想。 在本論文第四章中,我們使用WIN 0.15-?m GaAs pHEMT 製程 來設計一應用於5G 毫米波頻段之中功率放大器,操作頻率範圍為37 GHz 至40 GHz 。本電路為class-AB 架構,輸入及輸出端皆使用傳輸 線進行匹配網路。因操作在毫米波頻段且晶片面積受限以至於無法設 計drive PA ,因此我們以提高增益為主要目標進行設計。量測結果顯 示其小訊號在37 40 GHz 的操作頻率範圍內,其增益及輸入返回損耗 分別大於6.3 dB 及2.2 dB ,而輸出返回損耗則皆大於7.3 dB ;在量 測大訊號時因量測時打進去之輸入功率沒有額外架設;The advent of the fth-generation mobile communication (5G) net- work will provide greater data volume and higher.The transmission rate, shorter latency (latency), and support for more communication device connections.In order to achieve the vision of the next-generation mobile communication system [1], whether in the physical layer, media access control layer, network layer, or application layer all require more ad- vanced technology. In this paper, we will design power ampli ers in the sub-6 GHz and millimeter wave frequency bands, respectively, using the WIN 0.25-?m GaN HEMT (high electron mobility transistor) process and the WIN 0.15-?m GaAs pHEMT (pseudomorphic high electron mobility transis- tor) process to achieve. In the second chapter of this paper, we use the WIN 0.25-?m GaN HEMT process to design a 3.5-GHz class AB power ampli er for 5G small-cell base stations, with an operating frequency range of 3.3 GHz to 3.8 GHz. The measurement results show that the small signal is within the operating frequency range of 3.3 3.8 GHz, the gain and input return loss are greater than 10.2 dB and 12.6 dB, re- spectively, and the large signal is at 3.5 GHz, OP1dB and OP1dB The following PAE are 33.1 dBm (2W) and 44.4% respectively. The mea- surement results are in line with the power ampli er performance target of the active phased array at the transmitting end of the 5G small-cell base stations. In the third chapter of this paper, we also use the WIN 0.25-?m GaN HEMT process to design a 3.5-GHz power combine ampli er for 5G small-cell base stations, with an operating frequency range of 3.3 GHz to 3.8 GHz and the debugging of the circuit in the previous chapter optimizes this circuit. This circuit is composed of two single-stage power ampli ers. The power divider and power combiner of the impedance Wilkinson transforming structure are used for power combining. The power divider and power combiner of impedance transforming Wilkinson are Maded with o chip. It is realized by using FR4 high frequency two- layer board, and nally connecting with the power ampli er by way of pound wire. Since the o -chip impedance transforming Wilkinson power divider and combiner have not been assembled and measured with the circuit chip in this chapter, we will rst measure the single power ampli er of this circuit. The measurement results show that the small signal of the single power ampli er is within the operating frequency range of 3.3-3.8 GHz. Its gain and input return loss are respectively greater than 14 dB and 9.7 dB, and the large signal at 3.5 GHz, the PAE under OP1dB and OP1dB are 24.8 dBm and 16.6%, we suspect that it is caused by the overheating of the chip due to the large input power during the measurement and the poor heat dissipation during the measurement of the chip. The OP1dB and PAE are not as expected ideal. In the fourth chapter of this paper, we use the WIN 0.15-?m GaAs pHEMT process to design a power ampli er applied in the 5G millimeter wave frequency band with an operating frequency range of 37 GHz to 40 GHz. This circuit is of class-AB structure, and both the input and output terminals use transmission lines for matching network. Because it operates in the millimeter wave frequency band and the chip area is limited, it is impossible to design drive PA, so we designed with the main goal of increasing the gain. The measurement results show that its small signal is in the 37 40 GHz operating frequency range, its gain and input return loss are greater than 6.3 dB and 2.2 dB, respectively, and the output return loss is greater than 7.3 dB. When measuring large signals, because the input power entered during the measurement does not have an additional PA, the input power of IP1dB cannot be reached, so OP1dB has not been measured yet. |