本研究使用了基於狀態相關微分 Riccati 方程 (SDDRE) 方案的最新 三維撞擊角的導引,並提出了一個有效且保證 SDDRE 的適用性並且利 用事前之證明就能夠大大的減少在線計算負擔的新理論,然而適用性分 析是根據簡單的等效條件對狀態空間進行了完整分類及探討,其中所有 不適用的情況,也可以說在模擬時遇到故障點的情形都被新發現有效的 解決,該條件幾乎消除了繁瑣的在線檢查程序,這是複雜性分析和實際 經由證明所被認可的等效條件。另一方面,我們分析了這種 SDDRE 控 制器的計算複雜性,首先利用了受到大多數人都使用的 MATLAB? 框架 下的函式庫,再來使用了最為先進的函式做為比較,其中後者來自廣泛 試驗及比較後,發現足以達到最佳的性能。最後,經由模擬來增強了對 分析結果的信心,同時豐富了穩健性和通用性的價值,有益於其他導引 和控制系統之領域發展。;This study considers the latest three-dimensional impact angle guidance based on the state-dependent differential Riccati equation (SDDRE) scheme, and proposes a new theory that is effective and guarantees the applicability of SDDRE and can greatly reduce the burden of online calculation by using prior proofs. However, the applicability analysis is a complete classification and discussion of the state space based on simple equivalence conditions. All inapplicable situations, or it can be said that the situations encountered in the simulation of failure points are newly discovered and effectively solved. Conditions almost eliminate tedious online inspection procedures, which are equivalent conditions recognized by complexity analysis and actual certification. On the other hand, we analyzed the computational complexity of this SDDRE controller, first using the library under the MATLAB? framework that most people use, and then using the most advanced functions for comparison. The latter comes from extensive experimentation and comparison, and it is found to be sufficient to achieve the best performance. Finally, the simulation enhances the confidence in the analysis results, and at the same time enriches the value of robustness and versatility, which is beneficial to the development of other guidance and control systems in the field.