摘要: | 3D列印(Three Dimensional Printing)技術又稱為快速成型(Rapid Prototyping, RP)技術、積層製造(Additive Manufacturing, AM)技術,被認為是第三次工業革命的代表。其加工方式與傳統車削等加工方式迴異,製造成本較低、可塑性與發展空間大、應用層面更廣泛。近年來3D列印技術蓬勃發展,已被廣泛應用於製造工業、生物醫療、航天航空和建築行業等。而因為機台設備費用較親民、操作容易等因素,研究與使用最多的是熔融沉積成型技術。其相較於傳統加工的去除材料方式相反,採用材料由下而上層層堆疊的方式來製作物件,時間成本與製造成本皆得到大幅的降低,因此廣受製造業喜愛。 聚醚醚酮屬線性芳香族半結晶熱塑性工程材料,20世紀60年代就由美國杜邦公司與英國IGI合作研製成功。聚醚醚酮因其優異的機械性能、耐高溫性、耐腐蝕性、穩定的化學性質等優點,儼然已成為生物醫療材料的新興熱門材料。在傳統骨科醫療中,頸部及腰椎融合手術的融合器,通常是使用自體骨或金屬材料製作。但取骨手術有疼痛的後遺症及感染的風險。而金屬材料如鈦、不鏽鋼等,彈性模量遠大於皮質骨,容易造成應力屏遮,對新生骨強度造成不良的影響。在人工關節更換手術中,因關節處的屈伸與轉動活動產生摩擦的顆粒或粉末,將會與周圍細胞產生反應。因此考慮使用材料時,更需注意耗磨性能。此外植入物材質的選用會影響射線的穿透性,對於術後檢查所使用的X光顯影以及核磁共振技術,是否會形成偽影息息相關,選擇合適的植入物可以更好的評估術後恢復狀況。3D列印技術應用於醫療領域相較於傳統製作方式可以更快速建模、客製化與製作較複雜的模型,而聚醚醚酮材質製作的植入物經過多年的研究已實際應用在醫療中,在提高生物活性與改善力學性能方面進步也非常快速,未來將有望成為骨科、口腔等醫學領域的主要首選材料。 ;According to Wolff′s law and to avoid stress shielding effect, the modulus of elastic from implants and human bone should be as close as possible. Therefore, this study used the Fused Deposition Modeling Technology to print a polyetheretherketone ISO-527 5A test piece and bring its modulus of elastic into Compare with human bone, also explore the influence on modulus of elastic and strength by changing the important factors. Before study we have reviewed the previous literature to understand various conclusion of the impact on Deposition Modeling Technology printing results from most of scholars, and then use the laboratory machine to implement and cross-reference. We have got the three important factors, the printing direction, the annealing temperature, and the layer thickness, respectively. Then use the Taguchi orthogonal array table to set up the experiment, adjust the value of the important factor, make the corresponding tensile test ?, and then stretch at the uniform speed until it breaks. After the measurement data is converted into modulus of elastic and strength data, use S/N ratio and Analysis of variance to determine the contribution of each factor and find the best parameter combination. Results show that the parameters-optimization for modulus of elastic are separately direction of infill line directions [0,0], annealing at 200 degrees, and layer thickness 0.2 mm. The parameters-optimization for strength are separately direction of infill line directions [0.90], annealing at 200 degrees, and layer thickness 0.1 mm. The most influential factor on the modulus of elastic is annealing temperature, and the most influential factor on the strength is direction of infill line directions. |