摘要: | 鋁合金廣泛運用於航太、軍事、建築、機械、民生、3C、家電、電力、印刷、醫療、半導體產業等。其中航空工業在加工航太器的結構件應用範圍有機頭、機身、機翼等特徵,需使用重量輕且高強度及抗疲勞性材料。因此,如何使鋁合金高速切削是製造的重要議題。本論文以上述為出發,應用五軸龍門加工機高速銑削Al7475-T7351時,探討銑削加工條件對工件表面粗糙度的影響,求得較佳之表面粗糙度的銑削加工條件。首先利用高速切削理論基礎,選擇固定銑削加工條件為主軸轉速、進給率、切削深度及使用切削液。配合變動之銑削加工條件為6種主軸轉速(12000~14000)rpm,6種進給(6000~8000)mm/min,3種切削深度(1~3)mm,共108種組合進行試驗,執行銑削試驗操作後,量測工件之表面粗糙度。將實驗數據進行模型建立,並使用基因演算法求得優化參數組合,以期可縮短加工時間與加工成本,提升生產率。;Aluminum alloys are widely used in aerospace, military, construction, machinery, people′s livelihood, 3C, appliances, electricity, printing, medical, semiconductor industries, etc. Among them, the aerospace industry has the characteristics of nose, fuselage, wing and so on in the process of aerospace, Lightweight, high-strength and fatigue-resistant materials are required. Hence, How to make aluminum alloy high speed milling is important question in manufacturing. This paper has investigate the characteristics of the surface in high speed milling Al7475-T7351 aluminum alloy by using a five-axis machine tool. The surface roughness the machined surface for different milling conditions are studied, milling conditions for obtaining the best surface roughness. Firstly, based on high speed machining theory is considered to select fixed milling conditions with spindle speed , feed rate, depth of cut and use of cutting fluid. The variable milling conditions with 6 types of spindle speed (12000~14000)rpm, 6 types of feed rate (6000~8000)mm/min, 3 types of depth of cut (1~3)mm, 108 combination of tests are performed, Measured surface roughness of the workpiece. Model the experimental data, genetic algorithm is applied to find the better control parameters of the Milling, a subsequent processing time and cost can be reduced and productivity will be improved. |