摘要: | 在可攜式無線通訊系統製作上,一般是採用多重製程的方式做成一晶片組, 如射頻電路是採用砷化鉀或雙載子接面電晶體的製程而互補式金氧半場效應電晶體則是用於製作基頻電路或數位處理電路. 這樣的製作方式需要大量的使用到獨立元件, 在系統的複雜度及所需花費的費用較高. 隨著金氧半場效應電晶體製程技術的進步, 在射頻應用的特性上以漸漸顯現出潛力, 再加上使用適當的系統架構, 使得在系統整合能力上提升了他的可行性. 因此,射頻接收機前級的整合為本論文的研究目標. 在本論文中, 以應用於藍芽無線接收系統的來探討射頻前級的整合性,並且針對系統規格提出適用於藍芽系統之低中頻接收機,所有的線路包含有低雜訊放大器,混波器,鏡相消除濾波器, 及正交信號產生器, 模擬上顯示鏡相消除為30dB, 雜訊指數為15.2dB, 敏感度-70.8dBm, 電壓增益35.8dB, 三階信號交會點-14dBm. 使用3.3V的電壓, 及台灣積體電路公司所提供 0.6微米 SPTM 金氧半場效應電晶體, 功率消耗為250mW, 面積是3000微米4000微米. Since the rapid development of the CMOS technology, a RF analog front-end receiver can be integrated on a single chip. This thesis introduces a highly integrated RF receiver front end for Bluetooth system. This front-end design composed of low noise amplifier, two downconversion mixers, passive polyphase with buffers, and active polyphase filter. It receives the 2.4GHz desired high frequency signal ,and then translates it to 700KHz. Besides downconversion, it also needs image rejection by active polyphase filter. At last, it generates I_Q path and feed I_Q to baseband. Before I_Q fed into baseband, it needs AGC to reduce the dynamic range (44dB) and SAW filter as channel select filter. The design of AGC is not included in the thesis. The whole analog front-end is implemented by using TSMC 0.6um SPTM standard CMOS technology under 3.3V power supply. It has 35.8dB cascaded gain, 15.2dB noise figure, 24dB image rejection ratio, -14dBm IIP3. The total RF front-end power consumption is about 250mW. The total chip area is . |