中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/89397
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 40250887      線上人數 : 107
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/89397


    題名: 石墨烯/高熵奈米陶瓷觸媒之製備暨有機汙染物降解效率探討;Preparation of graphene/high-entropy nano ceramic catalyst and degradation of organic pollutant
    作者: 邱敬庭;Chiu, Ching-Ting
    貢獻者: 材料科學與工程研究所
    關鍵詞: 電觸媒;H2O2生成;高熵陶瓷;電芬頓法;汙水降解;Electrocatalyst;H2O2 production;High-entropy ceramics;Electro-Fenton reaction;Water pollution degradation
    日期: 2022-08-03
    上傳時間: 2022-10-04 11:13:07 (UTC+8)
    出版者: 國立中央大學
    摘要: 高熵材料相關研究開展至今已逾二十年,過往的研究都集中探討高熵合金於機械強度、延展性、熱穩定性等機械性質之強化。近年來,綠能材料的需求越發增加,目光逐漸放在高熵材料於功能性材料的研究上,並也證實高熵材料由於其高熵效應以及多元素之間的協同效應,能有效地增加各個催化反應的活性以及穩定性,為高熵材料的應用方向開創出不同的方向。芬頓反應是一種常見於工業污染處理技術,但該反應中所需的過氧化氫具有高度的風險性,並且反應副產物為大量的鐵淤泥沉積物,大大增加了汙染物處理的成本。為了解決這個問題,本文將以快速煆燒裂解法將AlCrCuFeNi混合硝酸金屬鹽前驅物還原成(AlCrCuFeNi)O高熵陶瓷,並將高熵陶瓷與石墨烯組合成一複合式奈米觸媒,透過此奈米觸媒於電芬頓法進行降解汙染物的研究,並評估功能性高熵材料分解汙染物的潛力。石墨烯/(AlCrCuFeNi)O高熵陶瓷製成之陰極增強了電芬頓過程中H2O2的生成,(AlCrCuFeNi)O高熵陶瓷提高了電催化活性和穩定性。由於高熵陶瓷的高電芬頓效率,石墨烯/(AlCrCuFeNi)O高熵陶瓷陰極相比於石墨烯以及(AlCrCuFeNi)O高熵陶瓷,前者在反應的90分鐘內能有效地去除99%的甲基橙,此外,其電芬頓效果在經過四次的重複性試驗後,仍能保持約80%的效能。最後,在此研究中,已成功比較有無添加捕捉劑之電芬頓效果,驗證了電芬頓法確實是由氫氧自由基分解汙染物,而超氧自由基是作為過氧化氫生成的活性中間體。;Research on high-entropy materials has been conducted for more than 20 years. In the past, research has focused on the enhancement of mechanical properties such as mechanical strength, ductility, and thermal stability of high-entropy alloys. In recent years, the demand for green energy materials has been increasing, and the attention has been focused on the research of high entropy materials for functional materials. In the meantime, related research has also confirmed that high-entropy materials can effectively increase the activity and stability of various catalytic reactions due to their high-entropy effect and the synergistic effect between multiple elements, opening up different directions for the application of high-entropy materials. The Fenton reaction is a commonly used technique for the remediation of industrial pollution, but hydrogen peroxide required in this reaction is highly hazardous and the enormous volume of iron sludge byproducts increases significantly the cost of pollution remediation. To address this issue, this study examined the efficacy of the electro-Fenton reaction in degrading pollutants utilizing a complex of graphene and a high-entropy ceramic catalyst, and evaluated the potential of functionalized high-entropy materials for the decomposition of pollutants. The degradation of organic water contaminants was investigated utilizing a novel composite of graphene and (AlCrCuFeNi)O high-entropy ceramics, to increase the generation of H2O2 in the electro-Fenton process. Rapid calcination pyrolysis produced (AlCrCuFeNi)O high-entropy ceramics to enhance both the electrocatalytic activity and the stability. Because of the high electro-Fenton efficiency of the high-entropy ceramics, the graphene/(AlCrCuFeNi)O HEC cathode effectively removed 99 % methyl orange within 90 min of operation.
    顯示於類別:[材料科學與工程研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML53檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明