English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41264208      線上人數 : 634
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/90037


    題名: 利用遞迴式勒壤得模糊類神經網路於永磁輔助同步磁阻馬達驅動系統之智慧型計算轉矩控制;Intelligent Computed Torque Control of Permanent Magnet Assisted Synchronous Reluctance Motor Using Recurrent Legendre Fuzzy Neural Network
    作者: 洪崇祐;Hung, Chung-Yu
    貢獻者: 電機工程學系
    關鍵詞: 永磁輔助同步磁阻馬達;計算轉矩控制;遞迴式勒壤得模糊類神經網路;每安培最大轉矩;有限元素分析;permanent magnet assisted synchronous reluctance motor (PMASynRM);computed torque control (CTC);recurrent Legendre fuzzy neural network (RLFNN);maximum torque per ampere (MTPA);finite element analysis (FEA)
    日期: 2022-08-24
    上傳時間: 2022-10-04 12:08:48 (UTC+8)
    出版者: 國立中央大學
    摘要: 本論文研究目的為研製與發展高性能永磁輔助同步磁阻馬達驅動系統,提出利用遞迴式勒壤得模糊類神經網路之計算轉矩控制法,以應對其非線性和時變特性。本論文首先介紹了使用有限元素分析法分析每安培最大轉矩控制,以獲得最佳的電流角命令,並將結果藉由查表法做應用。接著介紹計算轉矩控制法來追隨速度命令,但因系統存在總集不確定項很難事先得知,實際應用中難以實現。有鑒於此,提出結合了遞迴式勒壤得模糊類神經網路來近似計算轉矩控制。此外,為了補償遞迴式勒壤得模糊類神經網路可能的近似誤差,增加了一個自適應補償器,並利用李亞普諾夫穩定性理論推導,以保證遞迴式勒壤得模糊類神經網路線上學習法為漸進穩定。最後通過實驗結果驗證了所提出的遞迴式勒壤得模糊類神經網路之智慧型計算轉矩控制的有效性和強健性。
    最後,本研究以32位元浮點運算數位訊號處理器TMS320F28075將所提出的智慧型控制實現於永磁輔助同步磁阻馬達驅動系統。
    ;An intelligent computed torque control using recurrent Legendre fuzzy neural network (ICTCRLFNN) is proposed in this study to construct a high-performance PMASynRM drive system to confront its nonlinear and time-varying control characteristics. First, the dynamic model of a maximum torque per ampere (MTPA) controlled PMASynRM drive using ANSYS Maxwell-2D is introduced. The results of the finite element analysis (FEA) are made into a lookup table (LUT) to generate the current angle command of the MTPA. Then, a computed torque control (CTC) system is designed for the tracking of the speed reference. Since the detailed system dynamics including the uncertainty of PMASynRM drive system is unavailable in advance, it is very difficult to design an effective CTC in practical applications. Therefore, to alleviate the existed difficulties of the CTC, a recurrent Legendre fuzzy neural network (RLFNN) is proposed in this study to approximate the CTC. In addition, to compensate the possible approximated error of the RLFNN, an adaptive compensator is augmented. The online learning algorithms of the RLFNN are derived by using the Lyapunov stability method to assure asymptotical stability. Finally, the effectiveness and robustness of the proposed ICTCRLFNN controlled PMASynRM drive are verified by some experimental results.
    Finally, the proposed intelligent control system and the vector mechanism for the PMASynRM drive are implemented using a 32-bit floating point digital signal processor (DSP) TMS320F28075.
    顯示於類別:[電機工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML30檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明