本論文所使用材料為 AA2014 高強度鋁合金的擠製棒材進行退火並使用不同 的鍛造條件(包括鍛造模具及鍛造溫度),鍛造成型後進行固溶、淬水與時效處理 (T6)。研究目的在於探討不同鍛造溫度及鍛造縮減率等,對微結構組織產生的影響 包括二次相顆粒、動態再結晶、差排滑移、晶粒細化等,接著分析不同鍛造參數對 成型後鋁合金機械性質與抗腐蝕能力的影響。 AA2014 合金欲得到最高的降伏強度及極限抗拉強度,通常會採用 T6 頂時效 熱處理,但峰值時效熱處理會降低鋁合金的伸長率與韌性。鍛造製程有助於提高鋁 合金的強度及韌性,因此調查不同鍛造參數對性質的影響,可最佳化鋁合金強度及 韌性(toughness),抗鹽水腐蝕能力,研發成果可提供給業界作為設計與製造高強度 鋁合金的技術資料。 實驗結果分析顯示,在 440°C 進行壓縮率 62%的鍛造,能得到最高的 YS(降 伏強度):503MPa,以及 UTS(最大抗強度):567MPa;而在使用常溫及低溫鍛造在後 續進行頂時效處理會增加單位面積上二次相顆粒的數量以及單位面積上 40-45°的 高角度晶界,導致抗腐蝕能力下降。 ;Effects of different forging processes on the mechanical properties and corrosion resistance of AA2014 aluminum alloys were investigated in this study. The AA2014 extruded bars were used to undergo annealing treatment and subject to different forging processes (include different dies, forging temperatures and reduction ratios). Then, the forged samples were removed to carry out solution treatment, water quenched and T6 artificial aging treatment. The target of this study is aiming to investigate the microstructures of forged samples, including second phase particles, dynamic recrystallization, dislocation tangling and grain refinement. In addition, the effect of deformation on microstructure, mechanical properties and corrosion resistance would also be investigated. The high strength AA2xxx series aluminum alloys needs to obtain the highest yield strength(YS) and ultimate tensile strength(UTS). Usually peck-aging T6 heat treatment is used when using this alloy, but peck-aging heat treatment reduces the elongation and toughness of aluminum alloy. Using the forging process could improve the strength and toughness of aluminum alloy. The topics of this study is to assess the strength and corrosion resistance of aluminum forgings (cold and hot forgings). The analysis of the experimental results shows that the highest yield strength(YS): 503MPa and ultimate tensile strength(UTS): 567MPa can be obtained by forging at 440°C with a compression rate of 62%; Aging treatment will increase the number of secondary phase particles per unit area and high-angle grain boundaries of 40-45° per unit area, resulting in a decrease in corrosion resistance.