本論文模擬單光子放射顯微鏡系統之針孔穿隧效應,並以模擬所得之點響應函數建立影像系統矩陣。單光子放射顯微鏡系統架構包含針孔式準直儀、碘化銫閃爍晶體、電子增益電荷耦合元件、高質量光影像縮倍管(DM tube)等,在模擬針孔穿隧效應前需要先建立針孔表面方程式,用來辨別伽瑪射線射入針孔平面時是否會產生針孔穿隧效應,並透過三點共線模型確認物空間、針孔平面、偵測器平面三者間的關係,最後進行點射源的正向投影,從投影影像中的模糊函數進行高斯參數化和建立成像模型。 此成像模型包括通量模型、寬度模型和主軸角度模型,透過成像模型的建立和三點共線投影模型,即可建立影像系統矩陣。而建立針孔穿隧模型,可用於驗證針孔的取樣性,幫助我們設計出最佳的針孔圖像。最後將不同投影角度之目標投影影像和影像系統矩陣代入序列子集之期望值最大化演算法進行迭代演算,重建出三維物體影像和投影影像,驗證所建立之針孔穿隧模型與影像系統矩陣。 ;This study simulates the pinhole tunneling effect of the single-photon emission microscope (SPEM) and establishes the imaging system matrix from the simulated point response functions. The system configuration of SPEM includes a pinhole collimator, a thallium-doped cesium iodide crystal (CsI(Tl)), an electron multiplying charge-coupled device (EMCCD), and an electrostatic de-magnifier tube (DM tube). In simulation of pinhole tunneling effect, we have to first establish the pinhole surface equation to identify whether the pinhole tunneling effect will occur when a gamma ray is incident onto the pinhole plane. We also use the three-point collinear model to establish the relationship between the object space, the pinhole plane, and the detector plane. Then, we perform the forward projections of point sources, apply Gaussian parameterization to the projected blur functions and establish the imaging model. The imaging model includes the flux model, width model and principal angle model. By using the established imaging model and the three-point collinear model, we can build the imaging system matrix. Finally, we use the ordered subset expectation maximization (OSEM) to reconstruct 3D object images with target forward projection images and the system matrix. The image reconstruction results validate the established pinhole tunneling model and imaging system matrix. We anticipate this modeling procedure along with the sampling completeness analysis can aid in pinhole pattern design.