摘要: | 在本研究中,我們提出了一個結合心電圖(ECG)與心律變異度/自律神經檢測(HRV)分析的綜合系統,旨在提高心血管疾病的早期檢測和預後評估能力。系統利用機器學習技術,特別是一維卷積長短期記憶網路(1D-CNN-LSTM),對ECG信號進行自動檢測、分類和診斷。此外,該系統還對ECG信號進行預處理,包括去噪、信號和基線校正等,以及心律變異度/自律神經檢測(HRV)分析與圖形化顯示。 本研究使用了MIT-BIH心律失常數據庫,該數據庫包含了多種心律失常類型的ECG記錄。我們的方法對心律失常進行了有效的分類和檢測,並對HRV進行了詳細的分析。系統在自動識別心律失常和評估心律變異度方面表現出色,有助於提高診斷準確性和病患管理。 在臨床應用方面,該系統可以作為一個實時監測工具,幫助醫生迅速評估病患的心血管風險,並根據HRV分析結果制定個性化治療方案。此外,該系統可以應用於遠程監測,為居家患者提供及時的醫療幫助和警示。 未來研究方向包括:1) 擴展數據集,包括更多類型的心律失常和病患背景,以提高模型的泛化能力;2) 將其他生物醫學信號(如脈搏波、血壓等)融入系統,實現更全面的心血管健康評估;3) 開發更高效的機器學習算法,提高診斷準確性和計算效能;4) 研究心律變異度與其他生理指標的相互關聯,以揭示更多潛在的臨床信息和疾病機制;5) 探索如何將本系統與移動醫療設備結合,以便病患隨時隨地進行自我監測和獲得專業建議。 綜上所述,本研究提出的ECG與HRV分析系統展示了在心血管疾病檢測和評估方面的巨大潛力。機器學習技術的應用使得系統能夠自動識別和分類心律失常,同時詳細分析心律變異度,為病患提供更精確的診斷和個性化治療建議。未來研究將著重於提高系統的泛化能力、整合其他生物醫學信號,以及開發更高效的機器學習算法和移動醫療應用,為心血管疾病的患者提供更好的照護和改善生活品質。;In this study, we propose an integrated system for the analysis of electrocardiogram (ECG) and heart rate variability (HRV), aiming to improve the early detection and prognostic assessment of cardiovascular diseases. The system employs machine learning techniques, specifically 1D convolutional neural network and long short-term memory (1D-CNN-LSTM), to automatically detect, classify, and diagnose ECG signals. Additionally, the system preprocesses ECG signals, including denoising, signal and baseline correction, as well as HRV analysis and graphical representation. We utilize the MIT-BIH Arrhythmia Database in this study, which contains ECG records of various types of arrhythmias. Our approach effectively classifies and detects arrhythmias and provides a detailed analysis of HRV. The system performs excellently in automatically identifying arrhythmias and assessing heart rate variability, contributing to enhanced diagnostic accuracy and patient management. In terms of clinical applications, the system can serve as a real-time monitoring tool, assisting physicians in quickly evaluating patients′ cardiovascular risk and formulating personalized treatment plans based on HRV analysis results. Moreover, the system can be applied to remote monitoring, providing timely medical assistance and alerts for home-based patients. Future research directions include: 1) expanding the dataset, encompassing more types of arrhythmias and patient backgrounds, to improve the model′s generalizability; 2) incorporating other biomedical signals (such as pulse wave, blood pressure, etc.) into the system, achieving a more comprehensive assessment of cardiovascular health; 3) developing more efficient machine learning algorithms, enhancing diagnostic accuracy and computational efficiency; 4) investigating the interrelations between HRV and other physiological indicators to reveal additional clinical information and disease mechanisms; 5) exploring how to integrate the system with mobile healthcare devices, allowing patients to self-monitor and obtain professional advice anytime and anywhere. In summary, the ECG and HRV analysis system proposed in this study demonstrates significant potential in the detection and assessment of cardiovascular diseases. The application of machine learning techniques enables the system to automatically identify and classify arrhythmias while providing a detailed analysis of heart rate variability, offering patients more accurate diagnoses and personalized treatment recommendations. Future research will focus on improving the system′s generalizability, integrating other biomedical signals, and developing more efficient machine learning algorithms and mobile healthcare applications to provide better care and improve the quality of life for cardiovascular disease patients. |