English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41268911      線上人數 : 223
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/93215


    題名: Graph-based Similar Visits Enhanced Representation for Medication Recommendation
    作者: 廖七分;Liao, Ci-Fen
    貢獻者: 資訊管理學系
    關鍵詞: 藥物推薦;電子醫療病歷;圖卷積神經網路;Transformer;Medication recommendation;EMR;EHR;GCN;Transformer
    日期: 2023-07-19
    上傳時間: 2024-09-19 16:48:48 (UTC+8)
    出版者: 國立中央大學
    摘要: 藥物推薦在醫療資訊的應用領域是一項重要任務。先前的方法論都沒有善加利用 診療紀錄之間的醫療代碼的相似性來促進學習,並且過度強調單一病患的歷史診療紀 錄,而沒有妥善利用大量只有一次診療紀錄的病患資料。同時,近年的方法論中大多 數需要依靠外部知識的協助或是複雜的模型設計來提促進表現,使模型的適用範圍愈 趨狹隘,並且大多數研究都只以 MIMIC-III 資料集進行驗證。本研究提出一個能夠有效 利用所有看診紀錄的方法論 GSVEMed,並且使用兩個電子醫療紀錄資料集執行實驗, 強調以資料集本身的學習促進表現而不依賴外部知識,在結構簡單的情況下於 MIMIC- III 資料集取得與最先進作法相抗衡且在私人資料集明顯超過最先進作法的表現,並且 根據不同加護病房類型與醫院內科科別進行分析。;Medication recommendation is an important task in healthcare informatics. Previous methodologies have not effectively utilized the similarity of medical codes between visit records to facilitate learning. They have also overly emphasized the historical visit records of individual patients, without properly utilizing a large amount of patient data that consists of only one visit record. Additionally, most recent methodologies have relied on external knowledge or complex model architecture to improve performance, making the scope of application increasingly narrow. Furthermore, most studies have only validated their approaches using MIMIC-III dataset. This study proposes a method called GSVEMed that effectively utilizes all visit records. We conduct experiments using two electronic medical record (EMR) datasets, emphasizing performance improvement through learning from the datasets themselves rather than relying on external knowledge. Under the condition of a simple architecture, GSVEMed achieves performance comparable to state-of-the-art approaches on MIMIC-III dataset and significantly outperforms them on our private dataset. This study also conducts analyses based on different types of intensive care units of MIMIC-III and internal medicine departments of the private dataset.
    顯示於類別:[資訊管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML7檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明