本計畫將提出一個「Multimodel-based and In-Training XAI for Unsupervised Tiny and Fine-grained Visual Representation Clustering」,將Multimodel與contrastive learning結合,運用輔助圖提升模型關注Tiny重要特徵的能力,除此之外,也嘗試加入In-Training XAI,運用XAI的結果引導模型訓練,強化模型擷取特徵的能力,以達成透過非監督式(unsupervised learning)的方法,讓不同類別的圖片可以分在不同的群中,每一個群的成員大部分或全部是由同一個類別的圖片組成,若群分的好,即可完全無標註就能完成分類的任務。此技術大幅降低需要人工標註資料的問題,不僅前瞻,將可推廣擴散至各產業,大幅提升搜集資料導入AI的效率。