中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/94763
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41266329      在线人数 : 203
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/94763


    题名: Prediction of Organic Compound Infrared Spectra with Deep Learning and Molecular Mechanics Calculations
    作者: 楊士漢;YANG, SHI-HAN
    贡献者: 化學工程與材料工程學系
    关键词: 深度學習;紅外線光譜;卷積神經網路;變分自編碼器;Deep learning;Infrared spectroscopy;Convolutional neural network;Variational autoencoder
    日期: 2024-08-19
    上传时间: 2024-10-09 15:28:35 (UTC+8)
    出版者: 國立中央大學
    摘要: 紅外線光譜常被使用來研究化學物質結構,但是使用傳統的計算方法取得計算紅外線光譜將是不準確的或是需要耗費大量計算資源。在這項研究中,深度學習將被研究用來生成有機化合物的計算光譜。我們設計並訓練了一個卷積神經網路模型以加快及提高分子力學生成的光譜品質,這個模型學習了計算與實驗光譜之間的差異,可用來生成比原本只使用分子力學更高品質的光譜。我們設計了一個採用採用變分自動編碼器架構的模型,以研究生成式模型學習光譜生成的能力。這個變分自編碼器模型不僅在重建光譜方面性能非常接近先前的卷積模型,同時也能夠使資料的分布在潛在空間(latent space)中維持高斯分佈。收集和預處理光譜資料的方法也有被研究以為神經網路模型準備訓練資料集。;Infrared spectroscopy serves as a common tool for the analysis of chemical structure. The conventional computational methods for infrared spectral simulating are either time-consuming or inaccurate. In this work, the use of deep learning models was studied for the task of generating infrared spectra of organic compounds. A convolutional neural network model was designed and trained to fast generate experimental-like spectra with molecular mechanicsspectra as input.The model which learned the differences between experimental and molecular mechanics generated spectra can be applied to produce spectra that are better than the original spectra generated by molecular mechanics calculations. A model that adopts variational autoencoder architecture was designed to investigate the power of generative models for learning the generation of spectra. The variational autoencoder model is able to not only reconstruct spectra with a performance very close to the previous convolutional model but also maintain the distribution of data in the latent space Gaussian. The methods of collecting and preprocessing spectral data were also investigated to prepare a training dataset for the neural network models.
    显示于类别:[化學工程與材料工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML23检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明