近年來,隨著科技的迅速發展和環保意識的提升,對綠色能源來源的需求顯著增加。熱電模組,這種將廢熱轉換為電能的技術在再生能源領受到關注。其中,由碲化錫(SnTe)為基礎材料的中溫熱電模組在400至800K範圍內的高性能尤其引人注目。雖然在熱電性能上略遜於碲化鉛(PbTe),但碲化錫因其安全無毒的特性而更受青睞。 在實際應用中,中溫熱電模組會經歷長時間的高溫環境,導致熱電材料與電極之間發生劇烈的界面反應,這可能會顯著地降低模組性能,甚至可能導致模組失效。而在本研究中,將使用市售的銀銅鋅錫高溫銲膏,在973K條件下焊接1分鐘來接合碲化錫與銅電極。然後,樣品將在500K與600K溫度下進行0、1、5和15天的熱時效測試。本 研究旨在探討不同溫度下的界面反應,並評估中溫SnTe 熱電模組在長期運行條件下的可靠性。並嘗試加入電鍍鈷(Co)作為阻障層來改善接合狀況,在600K溫度下、0、1、5和15天的熱時效測試來評估電鍍鈷作為阻障層對於界面反應以及接點機械性質之影響。 由實驗結果得知,以此方式接合可以成功結合碲化錫與銅電極並且在500K、15天的熱時效測試下維持一定的接點強度,但在600K的情況下,因界面反應過於劇烈導致接點處大量銅擴散導致機械強度大幅下降,但在引入電鍍鈷擴散阻障層後不僅提升接點強度,經熱時效測試後亦維持良好的接點強度。;Recent advancements in technology and growing environmental awareness have increased the demand for green energy sources. Thermoelectric modules, which convert waste heat into electricity, are gaining attention. Mid-temperature modules made of tin telluride (SnTe) are notable for their high performance in the 400-800 K range. Although lead telluride has slightly better thermoelectric properties, SnTe is preferred for its safety and non-toxicity. In practical applications, mid-temperature thermoelectric modules undergo long term thermal aging, leading to interfacial reactions between the thermoelectric materials and electrodes. This can significantly reduce module performance or even cause failure. In this study, commercial AgCuZnSn braze paste will be used to bond SnTe with Cu electrodes under the condition of 973 K for 1 minute. The samples will then undergo thermal aging tests at 500 K and 600 K for 1, 5, and 15 days. This research aims to investigate interfacial reactions at different temperatures and assess the reliability of mid-temperature SnTe thermoelectric modules under long-term operational conditions. Additionally, cobalt (Co) electroplating will be attempted as a barrier layer to improve joint conditions. Thermal aging tests at 600 K for 1, 5, and 15 days will be conducted to evaluate the effect of Co electroplating on interfacial reactions and joint mechanical properties. Experimental results indicate that this bonding method can successfully bond SnTe and Cu electrodes, maintaining a certain level of joint strength after thermal aging tests at 500 K for 15 days. However, at 600 K, intense interfacial reactions cause significant Cu diffusion at the joint, leading to a substantial decrease in joint strength. Introducing a Co diffusion barrier not only improves joint strength but also maintains good joint strength after thermal aging tests.