中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/94775
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41266341      Online Users : 214
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/94775


    Title: 使用分子動力學模擬探討甲烷/二氧化碳/氮氣混合水合物的成核與生長;Studying the Nucleation and Growth of CH4/CO2/N2 Mixed Hydrates Using Molecular Dynamics Simulation
    Authors: 江奕昀;Chiang, Yi-Yun
    Contributors: 化學工程與材料工程學系
    Keywords: 分子動力學;氣體水合物;結晶;二氧化碳封存;煙氣置換;MD;clathrate hydrates;crystallization;carbon dioxide sequestration;flue gas replacement
    Date: 2024-08-20
    Issue Date: 2024-10-09 15:29:04 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 氣體水合物
    是一種結晶化合物,在低溫和極高壓力下由水 形成籠狀結構包覆 氣體
    分子 。 由於甲烷水合物在全球的大陸棚和海底沉積物中廣泛存在,因此被視為一
    種極具發展潛力的新興能源 。 科學家 們 提出 使 用 二氧化碳取代水合物中的甲烷,
    可以 將二氧化碳以水合物形式封存在海底並將置換出來的甲烷當作能源使用 ,既
    可以 減緩溫室氣體效應 ,還能應對能源挑戰 。而利用煙氣替代開採甲烷水合物是
    近年來提出的新方法,煙氣為燃燒發電後的廢氣其主要成份為二氧化碳與氮氣,
    使用煙氣置換甲烷水合物不僅可以降低分離二氧化碳的成本, 氮氣 還 可以 置換 二
    氧化碳難以 取代的 水 合物結構 ,以提高甲烷回收率。然而目前對 混合 氣體分子在
    水合物形成過程中 成核情況 的了解 非常有限。
    在本研究中使用分子動力學模擬來探討發生在液態水與氣體分子
    (甲烷、二氧化
    碳和氮氣 )系統中 形成水合物的成核競爭以及氣體類型和比例對 成核速率的影響。
    研究 結果顯示純二氧化碳水合物的成核速率比純甲烷水合物與純 氮氣水合物快,
    與氮氣水合物相比,加入二氧化碳對甲烷水合物有更顯著的促進成核效果。在雙
    成分甲烷 /二氧化碳水合物中,初始成核 為 包覆甲烷 的 512籠 (由水分子形成的 十
    二個五邊形面 )。在三成分甲烷 /二氧化碳 /氮氣水合物 中 ,觀察到氮氣 也有機會 存
    在 於 初始成核 的 512籠 中 。 另外,計算發現 水合物形成的比例 會 與混合氣體比例
    之間存在線性 關係 ,其中氮氣與甲烷 容易 形成 512籠 ,而二氧化碳 較容易 形成
    4151062籠 (由水分子形成的一個正方形面、十個五邊形面和兩個六邊形面 )則 有所
    不同 。另外 模擬結果顯示當系統 沒有固體水合物時 ,水合物 會 在系統中某處形
    成第一個穩定水合物後才開始快速生長 而 當 系統存在 固體水合物時,水合物會
    從固體 水合物 與液體的 界 面開始生長 且生長的 水合物 結構 與固體水合物相似
    證明了封存煙氣的可行性 。;Clathrate hydrates are crystalline compounds where water forms cage-like structures around gas molecules at low temperatures and very high pressures. Due to the widespread presence of methane (CH4) hydrates in the continental shelves and seabed sediments, they are regarded as a highly promising emerging energy source. A replacement of CH4 by carbon dioxide (CO2) in hydrates, allowing CO2 to be stored as hydrates on the seafloor while the released CH4 can be used as energy, was proposed to both mitigate greenhouse gas effects and address energy challenges. In addition, a novel method involves using flue gas to extract CH4 hydrates was suggested. Flue gas, the exhaust gas from power generation, primarily consists of CO2 and nitrogen (N2). Using flue gas to replace CH4 hydrates can reduce the cost of separating CO2, and N2 can replace hydrate structures that are difficult for CO2 to replace, thus enhancing CH4 recovery rates. However, the current understanding of the nucleation process of mixed gas molecules in hydrate formation is still limited.
    In this study, molecular dynamics (MD) simulations were used to investigate the nucleation competition of hydrate formation in systems of liquid water and gas molecules (CH4, CO2, and N2) and the effect of gas types and gas ratio on nucleation rates. The results showed that the nucleation rate of pure CO2 hydrates is faster than that of pure CH4 and pure N2 hydrates. Adding CO2 significantly promotes the nucleation of CH4 hydrates compared to N2 hydrates. In a binary CH4/CO2 gas system, the initial nucleation 512 cage (with 12 pentagonal faces formed by water molecules) always encapsulates CH4. In a ternary CH4/CO2/N2 gas system, N2 can also be encapsulated in the initial 512 cage. The proportion of hydrates formed shows a linear correlation with the ratio of mixed gases. CH4 and N2 form 512 cages, while CO2 forms 4151062 cages (with 1 square face, 10 pentagonal face, and 2 hexagonal faces formed by water molecules). Additionally, simulation results indicated that without solid hydrates, hydrate growth only accelerates after the first stable hydrate forms somewhere in the system. In contrast, with solid hydrates present, growth begins at the interface between solid hydrates and the liquid, and the structure of the growing hydrate resembles that of the solid hydrate, demonstrating the feasibility of storing flue gas.
    Appears in Collections:[National Central University Department of Chemical & Materials Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML21View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明