本研究中將藉由兩步驟金屬輔助蝕刻製程 藉由調控蝕刻 液之 組成 成份 以及 改變 製程之 蝕刻時間 在 p-type(111)晶面上之矽 基材上製備 大面積之字型矽單晶奈 米線結構 。接著利用加熱之銅柱來模擬電腦之發熱元件 並利用銅柱兩端溫度差來 計算矽 奈米線 微型散熱器 之熱流變化來進行 散熱性能測定。 此外,為提升 元件之 散 熱 能力,進一步導入酸蝕刻製程技術,製備出多孔隙 之字 型矽 奈米線結構,以提高 矽奈米線 散熱 元件之比表面積,並在最佳 製程 條件之 字 型矽奈米線上 運 用無電鍍 法 沉積 銀奈米粒子, 來 製備銀 多孔隙之字型奈米線複合材料 利 用銀奈米粒子之高導 熱性來進一步提升元件散熱性能 。 銀 多孔隙之字型奈米線複合材料 相較於一般常 見之準直型矽晶奈米線結構相比 其散熱效果有顯著提升。此外 由於矽晶基材本 身 硬脆特性及其熱導率不如金屬等限制,使在矽晶基材表面製備完成之矽 奈米線散 熱元件 之實際應用範圍受到限制 ,無法應用於彎曲表面 上 因此 研究 中 將製備完成 之字型奈米線結構放置於過氧化氫濃度較高之蝕刻溶液中 藉由之字型奈米線底部 殘留之銀奈米粒子催化側向蝕刻 掏空矽晶奈米線底部結構 並利用可撓曲導電銅 膠帶將結構黏附至銅基材上 同時不改變原始矽晶奈米線形貌 。 轉附至導電銅膠帶 之字型矽晶奈米線結構 因 銅基材導熱性較佳之優勢使散熱元件之散熱效率有更近 一步提升 。最後 將製備完成之矽 奈米線散熱元件應用於熱電元件冷端表面 藉由元 件比表面積大及金屬 矽複合材料等優勢 提升熱電元件兩端溫度差 以提升熱電元 件輸出功率 。;In this study, we employed a multi-step metal-assisted chemical etching method to prepare large-area, zigzag-shaped silicon nanowires on p-type (111) silicon substrates by adjusting the etching solution and varying the etching time. Subsequently, we used heated copper columns and calculated the thermal performance of the silicon nanowire based on the temperature difference across the copper columns. Furthermore, to enhance the heat dissipation capability of the devices, we introduced an acidic etching process to fabricate porous zigzag-shaped silicon nanowires. This increased the specific surface area of the silicon nanowire heat dissipation devices. Then we coated silver nanoparticles on these zigzag-shaped nanowires using electroless deposition, creating silver/porous zigzag-shaped nanowire composite materials. The high thermal conductivity of silver nanoparticles further improved the heat dissipation performance of the devices. Due to limitations such as lower thermal conductivity of silicon substrates, application of silicon nanowire heat dissipation devices on curved surfaces is restricted. Therefore, we immersed the zigzag-shaped nanowires in a high-concentration hydrogen peroxide etching solution. The remaining silver nanoparticles hollow out the bottom structure of the silicon nanowires. We then adhered these structures to a copper substrate using flexible conductive copper tape without altering the original morphology of the silicon nanowires. The superior thermal conductivity of the copper substrate further enhances the heat dissipation efficiency of the devices. Finally, we applied the fabricated silicon nanowire heat dissipation devices to the cold side surface of thermoelectric generators. Advantages such as a larger specific surface area and the metal-silicon composite material, we enhanced the temperature difference across the thermoelectric generators to increase their output power.