English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41145195      線上人數 : 628
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/95293


    題名: 利用邊緣裝置結合物件偵測技術應用於農場偵測害蟲系統;Utilizing edge devices combined with object detection technology for pest detection system in agricultural farms
    作者: 黃裕誠;Huang, Yu-Cheng
    貢獻者: 通訊工程學系
    關鍵詞: 智慧農業;邊緣裝置;物件偵測;smart agriculture;edge devices;object detection
    日期: 2024-07-10
    上傳時間: 2024-10-09 16:38:09 (UTC+8)
    出版者: 國立中央大學
    摘要: 隨者務農人數意願降低而逐年減少,智慧農業為一種當前重要的發展,目前的務農人以中高年齡居多,而隨著年齡的增長,體能上不如過往,生產力可能也會降低,故在農業問題上面臨了人力短缺的問題。且還有近幾年的全球暖化問題讓外在環境逐漸顯惡,在長時間高溫曝曬的環境可能也會讓人體無法負荷。於是結合邊緣裝置結合物件偵測技術,利用監控的方式讓農民可以不用長時間的待在高溫曝曬的環境中。網路技術的興起,物聯網技術也會跟著網路技術的興起而有所進步。利用物聯網技術來幫助農業上的問題,可以降低相關人力與成本。本論文提出了一套利用邊緣裝置結合物件偵測技術來辨識害蟲的系統,使用樹莓派用來做邊緣裝置,結合YOLOv5物件偵測技術實現辨識害蟲的功能,並將偵測到的影像截圖利用Line notify通知使用者進行後續處理,同時將影像偵測結果上傳備份至AWS雲端儲存桶內。本地端進行邊緣端的偵測模型訓練,並將訓練好的模型上傳至AWS雲端,以AWS雲端技術做為本地端與邊緣裝置之間的連結。這種方式大幅降低的資料傳輸延遲、降低成本、降低中心壓力及增加隱私安全性。;As the number of farmers willing to engage in agriculture decreases annually, smart agriculture has become an important current development. Currently, most farmers are of middle to advanced age, and as they grow older, their physical abilities may decline, potentially reducing productivity and leading to a shortage of labor in agriculture. Furthermore, the escalating global warming issue in recent years has worsened external environmental conditions, making prolonged exposure to high temperatures unbearable for humans.To address these agricultural challenges, integrating edge devices with object detection technology allows farmers to monitor conditions without prolonged exposure to extreme heat. With the rise of internet technology, IoT (Internet of Things) capabilities have advanced accordingly, offering solutions to agricultural issues that can reduce labor costs.This paper proposes a system that utilizes edge devices combined with object detection technology to identify pests. Specifically, it employs a Raspberry Pi as an edge device and integrates YOLOv5 object detection to achieve pest identification. Detected images are captured and notified to users via Line notify for further action, while detection results are also backed up in an AWS cloud storage bucket. Training of the edge-side detection model is conducted locally, and the trained model is uploaded to AWS cloud to establish the connection between local and edge devices using AWS cloud technologies. This approach significantly reduces data transmission latency, lowers costs, alleviates central processing burdens, and enhances privacy and security.
    顯示於類別:[通訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML13檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明