中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/95316
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41143675      Online Users : 169
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/95316


    Title: 基於邊緣運算和LSTM的即時暴力檢測系統;Real-time Violence Detection System based on Edge Computing and LSTM
    Authors: 賴世晟;Lai, Shih-Cheng
    Contributors: 通訊工程學系
    Keywords: 邊緣運算;MobileNet;LSTM;物聯網;Edge Computing;MobileNet;LSTM;IoT
    Date: 2024-07-16
    Issue Date: 2024-10-09 16:39:12 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 近年來物聯網的應用讓設備之間的聯繫更為緊密,有助於即時傳遞重要
    訊息。然而,在現有監控系統中,物聯網的優勢未能充分發揮,許多暴力事
    件仍無法及時察覺和干預,導致無法挽回的傷害。這顯示出目前監控系統在
    即時檢測和預防暴力事件方面仍有不足。
    本論文提出了一種利用樹莓派作為邊緣裝置的智慧監控系統,旨在應對
    暴力事件的日益增長及現有監控系統的不足。此系統運用了機器學習技術,
    結合移動神經網路(MobileNet)和長短時記憶網路(LSTM),能夠即時檢
    測並識別暴力行為,同時向相關單位發送警報,以提高對暴力事件的預防與
    即時回應能力。此外,為了兼顧隱私和資料安全,系統採用邊緣運算核心,
    這不僅保護了個人隱私,還能高效利用影像資料進行分析。這種設計在增強
    公共安全監控效能的同時,也能有效保障個人隱私。
    ;In recent years, the application of the Internet of Things (IoT) has
    significantly tightened the connectivity between devices, facilitating the
    instantaneous transmission of crucial information. However, the potential of IoT
    has not been fully realized in existing surveillance systems, and many violent
    incidents still go undetected and unaddressed in time, resulting in irreparable harm.
    This highlights the current shortcomings of surveillance systems in the real-time
    detection and prevention of violent events.
    This thesis utilizes the Raspberry Pi as an edge device to address the growing
    prevalence of violent incidents and the inadequacies of existing monitoring
    systems. By employing advanced machine learning technologies, we develop an
    intelligent surveillance system. The system integrates Mobile Neural Networks
    (MobileNet) and Long Short-Term Memory networks(LSTM) to detect and
    identify violent behaviors in real time. Upon identification, it sends alerts to
    relevant authorities, enhancing the prevention and immediate response to violent
    events. Additionally, to balance privacy and data security, the system employs
    edge computing at its core, safeguarding personal privacy while efficiently
    analyzing video data. This design not only enhances the effectiveness of public
    safety monitoring but also effectively protects individual privacy.
    Appears in Collections:[Graduate Institute of Communication Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML23View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明