English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41141326      線上人數 : 48
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/95365


    題名: A Digital Twin Based Learning Architecture for Resource Allocation in O-RAN
    作者: 林彥澄;Lin, Yen-Chen
    貢獻者: 通訊工程學系
    關鍵詞: 開放式無線網路;排程演算法;無線基地台;Open RAN;Celluar;6G;Scheduling;ns-3
    日期: 2024-08-15
    上傳時間: 2024-10-09 16:42:55 (UTC+8)
    出版者: 國立中央大學
    摘要: 隨著網路環境的持續發展,當前網路性能已不能滿足期望,需要進一步改進。O-RAN 引入 AI/ML workflow,旨在實現網路優化、預測性維護、智能流量管理、安全檢測和服務保證。將 AI/ML 整合到 O-RAN 中,運營商可以創建更高效、可靠和智能的網路,提供更優質的服務,降低成本,並適應不斷變化的需求。為解決對 AI/ML 模型信任度的問題,可採取包括選擇透明度高的模型、進行嚴格測試、遵守標準規格,以及進行跨領域協作。在虛擬環境中部署智能控制方法,如 near-RT RIC 的 xApp,可驗證演算法可行性並最小化錯誤決策。通過結合 AI/ML 技術的培訓環境,運營商能夠建立自動化的應用開發流程,同時降低與 AI/ML 部署相關的風險,從而實現網路性能的全面提升。;With the continuous development of the network environment, the current net-work performance has fallen short of expectations and there is a need for further improvement. Hence, O-RAN introduces AI/ML workflows to achieve network optimization, predictive maintenance, intelligent traffic management, security and anomaly detection, and customer experience. By integrating AI/ML workflows into O-RAN, operators can leverage the power of data-driven decision-making, automation, and optimization to create more efficient, reliable, and intelligent mobile networks. This enables them to deliver better service quality, reduce costs, and adapt to the evolving needs of mobile communication systems. To address concerns regarding trust in AI/ML models where network operators have limited control, several measures can be taken. Firstly, selecting models that offer transparency and explainability ensures operators can understand and interpret the decision-making process. Additionally, rigorous testing and validation in various scenarios, including simulated and real-world environments, help evaluate performance and reliability. Adhering to industry standards, regulations, and implementing security measures and privacy compliance also fosters trust. Collaborative development and peer reviews involving experts from different domains provide external validation. When comparing AI/ML solutions, considering vendor reputation, track record, performance metrics, and
    customer reviews is crucial. Lastly, to ensure real network performance, deploying intelligent control methods in virtual environments, such as near-RT RIC’s xApp, can verify algorithm feasibility and minimize erroneous decisions. By leveraging training environments that combine expert knowledge with AI/ML techniques, operators can establish fully automated app development processes and mitigate risks associated with AI/ML deployments.
    顯示於類別:[通訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML30檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明