中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/95417
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41244919      線上人數 : 907
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/95417


    題名: 基於神經正切核實現點雲部件切割之旋轉強健性;Achieving Rotation Robustness in Point Cloud Part Segmentation Based on Neural Tangent Kernel
    作者: 廖泓閔;Liao, Hong-Min
    貢獻者: 資訊工程學系
    關鍵詞: 部件切割;旋轉強健性;神經正切核;Part Segmentation;Rotation Robustness;Neural Tangent Kernel
    日期: 2024-07-02
    上傳時間: 2024-10-09 16:47:21 (UTC+8)
    出版者: 國立中央大學
    摘要: 由於實務上在進行點雲部件切割時無法保證輸入點雲始終能夠保持同一方向,因此使模型具有足夠的泛化性並具有旋轉強健性至關重要,本論文提出一種全新的旋轉強健性技術──神經正切逼近法,我們利用神經正切核來尋找旋轉角度加入訓練資料,它能夠避免對於複雜的數學與幾何學知識的要求,同時可以顯著的降低計算成本以及記憶體空間。在ShapeNetPart上進行的實驗表明了神經正切逼近法可以在保留對未旋轉點雲的高準確率的同時使模型具有旋轉強健性的能力,與ART-Point相比,我們在搜尋旋轉角度的速度上快了將近9倍,且記憶體的使用量也減少了將近1倍,同時實驗也表明了神經正切逼近法對於未旋轉點雲及旋轉後點雲的準確率皆高於ART-Point,這也顯示了我們所提出的神經正切逼近法與其他state-of-the-art方法具有可比較性。;In practical point cloud part segmentation applications, it is often impossible to ensure that the input point clouds keep the same orientation. Therefore, it is crucial for the model to generalize well and possess rotation robustness. This thesis proposes a novel method for achieving rotation robustness: the Neural Tangent Approximation Method. By utilizing the neural tangent kernel, we integrate augmented data with rotation angles into the training data. This approach avoids the need for complex mathematical and geometrical knowledge, significantly reducing computational costs and memory usage. Experiments conducted on the ShapeNetPart dataset demonstrate that the Neural Tangent Approximation Method maintains high accuracy for non-rotated point clouds while enhancing robustness for rotated inputs. Compared to ART-Point, our method is nearly nine times faster at searching for rotation angles and uses about half as much memory. Furthermore, our experiments show that our method surpasses ART-Point in accuracy for both non-rotated and rotated point clouds, achieving state-of-the-art performance.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML22檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明