中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/95539
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41143694      在线人数 : 187
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/95539


    题名: 基於因果勝算比推薦設計資料市集所需的索引維度;Recommend Data-Mart Index Dimensions Based on Causality Odds Ratio Measures
    作者: 翁培馨;Weng, Pei-Hsin
    贡献者: 資訊工程學系
    关键词: 因果勝算比探勘;資料市集;校務研究;Causal Odds Ratio Mining;Data Mart;Institutional Research
    日期: 2024-07-22
    上传时间: 2024-10-09 16:59:59 (UTC+8)
    出版者: 國立中央大學
    摘要: 近年來,大數據的發展趨勢使得校務研究逐漸成為眾多學校關注的議題。為了應對這一趨勢並提高教學品質,本校成立了校務研究單位,整合了包括學生學業成績、課程選擇、社團參與等多個維度的數據,構建了一個既豐富又複雜的資料倉儲。然而,校務研究員在針對不同主題時,如何從資料倉儲中組織出適合的資料市集仍是一項挑戰。僅依靠經驗或相關性可能會產生看似有意義但實質無意義的訊息。本研究認為,資料市集的索引維度應該反映出具有因果可能的分析角度,避免不嚴謹的資料市集設計導致分析結果的不準確和難以解釋,進一步影響決策支援的效果。
    本研究採用基於相關性特徵選擇(Correlation-based Feature Selection, CFS)來計算和評估特徵集合的價值,並搭配使用向前選擇(Forward Selection, FS)作為具體的特徵選擇方法,篩選出符合特定主題的特徵集合。隨後,透過因果勝算比探勘技術,針對特定主題進行深入分析,同時評估在給定的數據範圍內,該主題是否具有深入探索的可適性。本研究以校務資料倉儲作為資料來源,分別對 「在學適應良好」、「在學不適應」、「多元學習」三個不同主題進行探討,推薦在特定主題中能夠突顯因果相關的資料市集所需的索引維度。藉此協助校務研究人員在教育方針上能更精準且有力,達到決策支援。;In recent years, the trend of big data has gradually made institutional research a topic of concern for many schools. To cope with this trend and improve teaching quality, our school has established an institutional research unit, integrating data from multiple dimensions including student academic performance, course selection, and club participation, forming a rich and complex data warehouse. However, for institutional researchers addressing different topics, how to organize suitable data marts from the data warehouse remains a challenge. Relying solely on experience or relevance may generate seemingly meaningful but essentially meaningless information. This study argues that the index dimensions of the data marts should reflect potentially causal analysis perspectives. Avoiding imprecise data mart design is crucial as it can lead to inaccurate analysis results and difficulties in interpretation, further affecting the effectiveness of decision support.
    This study employs the Correlation-based Feature Selection (CFS) method to calculate and evaluate the value of feature sets. In combination with Forward Selection (FS), it is used to filter out feature sets that align with specific themes. Subsequently, using causal odds ratio mining techniques, it conducts in-depth analysis on specific topics while assessing whether the topic is suitable for in-depth exploration within a given data range. This study uses the institutional research data warehouse as the data source and discusses three different topics: "good adaptability in school," "poor adaptability in school," and "diversified learning." It recommends the index dimensions required for data marts that can highlight causal relevance in specific topics. This assists institutional researchers in being more precise and effective in formulating educational policies, thereby achieving decision support.
    显示于类别:[資訊工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML19检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明