在本研究中,我們使用In-Ga-Zn-O (IGZO)通道材料與超晶格HfO_2/ZrO_2(SL-HZO)結合,搭配3000W低熱預算的微波退火技術,製造了nearly wake-up free之金屬-鐵電-半導體-金屬(MFSM)電容器。為了消除在ALD生長過程中的碳汙染,我們使用H_2電漿實現了高品質的IGZO/HZO界面,並被X射線光電子能譜學(XPS)證實。經過遠程氫電漿處理提升了極化量Pr與矯頑場Ec,達到了2Pr: 40 μC/cm2 及 Ec: 2.33 MV/cm,使其實現了低功耗 30ns 的寫入速度與均勻的 8 state-per-cell 的儲存密度。高品質的介面確保了 10^8次循環的耐久性以及在超過90°C 溫度下穩定的10年數據保存能力。這種閘級堆疊結構為未來AI記憶計算提供了一條新的途徑。;In this study, we integrated IGZO channel with a superlattice of HfO_2/ZrO_2 (SL-HZO) under low-thermal-budget microwave annealing to produce a nearly wake-up free ferroelectric capacitors (FeCAP). To eliminate the impact of trap-charges during the atomic layer deposition (ALD) process, we conducted H_2 plasma treatment to eliminate leak defects induced by carbon contamination and maintain neutrality to achieve high-quality IGZO/HZO interfaces, confirmed by X-ray photoelectron spectroscopy (XPS). The H_2 plasma treatment improved polarization (Pr) and coercive field (Ec), reaching 2Pr: 40 μC/cm^2 and Ec: 2.33 MV/cm, enabling a low-power writing speed of 30ns with 8 states (3 bits per cell). The defect engineering method ensures endurance of up to 10^8 cycles and retains 10-year data storage at 90°C. This research provides a new avenue for improving emerging oxide interfaces controlled by ferroelectric polarization.