摘要: | 隨著人工智慧(AI)和物聯網(IoT)產業的迅速發展,高速光連結系統所負荷的資料量大幅增加,共同封裝光學元件(Co-Packaged Optics, CPO)已成為光連結系統中的關鍵技術,因此需要藉由提高CPO系統的封裝密度,進而提升資料傳輸密度。將單模高速垂直共振腔面射型雷射(VCSEL)和單模光纖結合,相較於和多模光纖結合,能夠提供更高的資料傳輸密度。因此具有高單模輸出功率和強大的抗反射能力的VCSEL,在提高CPO的封裝密度中起著至關重要的作用。 在本論文中,我們設計新穎的鋅擴散結構,能有效抑制空間電洞燒炙(Spatial Hole Burning)效應帶來的影響,將傳統單模VCSEL常見的低頻roll off及抗光反射能力較差的問題最小化。 通過改變鋅擴散結構的孔徑,我們實現6.7 mW的高單模輸出功率、27GHz的寬3-dB頻率響應以及-137dB/Hz的低相對強度噪音值(Relative Intensity Noise, RIN)。在使用傳統多模光纖條件下進行眼圖量測,back-to-back (BTB)的Data rate可以達到56 Gbps, 500公尺傳輸的Data rate可以達到46Gbps。另外在反射光為-6dB的情況下,Data rate可以達到52Gbps。 我們將850nm單模VCSEL與單模光纖結合,進行長距離傳輸量測。在經過一公里單模光纖傳輸後,系統(VCSEL+光纖)的頻寬從26GHz增加到31GHz。這是首次藉由850nm波段的光纖,看到高達 5GHz明顯的頻寬提升。此外,眼圖量測在back-to-back(BTB)的條件下,Data rate可以得到56 Gbps,並且在200公尺傳輸後的Data rate同樣可以得到56Gbps,眼圖的品質相比BTB幾乎無劣化。 ;With the rapid development of the artificial intelligence (AI) and Internet of Things (IoT) industries, the data load on high-speed optical interconnect systems has significantly increased. Co-Packaged Optics (CPO) has become a key technology in optical interconnect systems. Therefore, it is necessary to enhance the packaging density of CPO systems to further increase data transmission density. Combining single-mode high-speed Vertical-Cavity Surface-Emitting Lasers (VCSELs) with single-mode fibers, as opposed to multi-mode fibers, can provide higher data transmission density. Therefore, VCSELs with high single-mode output power and strong anti-reflection capabilities play a crucial role in increasing the packaging density of CPO. In this thesis, we designed a novel zinc diffusion structure that effectively suppresses the impact of Spatial Hole Burning (SHB) and minimizes the common issues of low-frequency roll-off and poor anti-reflection capability in traditional single-mode VCSELs. By altering the aperture structure of zinc diffusion, we achieved a high single-mode output power of 6.7 mW, a wide 3-dB frequency response of 27 GHz, and a low Relative Intensity Noise (RIN) value of -137 dB/Hz. Eye diagram measurements under traditional multi-mode lens fiber conditions showed that the back-to-back (BTB) data rate reached 56 Gbps, the data rate for 500 meters of transmission was 46 Gbps, and with -6 dB reflected light, the data rate achieved was 52 Gbps. We combined the 850nm single-mode VCSEL with single-mode fiber for long-distance transmission measurements. After one kilometer of single-mode fiber transmission, the system (VCSEL + fiber) bandwidth increased from 26GHz to 31GHz. This is the first time a significant 5GHz bandwidth enhancement has been observed using fiber at the 850nm wavelength. Additionally, eye diagram measurements under back-to-back (BTB) conditions showed a data rate of 56 Gbps, and the same data rate was maintained after 200 meters of transmission, with the eye diagram quality showing almost no degradation compared to BTB conditions. |