English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41263045      線上人數 : 931
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/95697


    題名: 具有多層累增層的累增崩潰光電二極體在近蓋格模式操作下其增益和頻寬對光窗尺寸的相依性;Window Size Dependence of Gain and Bandwidth in Avalanche Photodiodes with Multiple Multiplication Layers under Near Geiger-Mode Operation
    作者: 張硯傑;Chang, Yan-Chieh
    貢獻者: 電機工程學系
    關鍵詞: 調頻連續波光達;累增崩潰光二極體;背照式累增崩潰光二極體
    日期: 2024-07-24
    上傳時間: 2024-10-09 17:09:57 (UTC+8)
    出版者: 國立中央大學
    摘要: 至今為止,操作在接近蓋格模式(Geiger mode)下的累增崩潰光二極體(APD)在各種不同應用中檢測極弱光(單或多個光子)扮演重要的角色,例如:單光子探測器、飛時測距(ToF)、頻率調製連續波(FMCW)光達系統以及光時域反射儀(OTDR)。為了滿足這樣應用的需求,我們需要一種大主動窗口、適中頻寬以及高響應度的光二極體。由於本質上APD增益頻寬積(GBP)的限制,很難設計同時滿足上述這樣要求的APD。在本篇論文中,我們透過厚的吸收層(~2μm)和以In0.52Al0.48As為材料的三層累增層來克服APD中GBP的瓶頸。此外,我們的 APD 中從低到極高的操作增益具有不變 3 dB 頻寬,這樣的特徵隨著主動區光窗直徑的增加(40 至 200 µm)而變得更加明顯。這樣的特性對於LiDAR中用於偵測極弱光的接收器有很大的吸引力。而本篇的量測結果指出200 µm APD相對於40 µm APD表現出更高的0.9 Vbr 響應度(15 vs. 7 A/W)、更大的最大增益(460 vs. 110)以及更高的GBP(468 vs. 131 GHz),同時在大範圍的操作增益下(10 ~ 460)維持不變的3dB頻寬(1.4 GHz)。然而,為了獲得更大的3dB頻寬,我們把元件尺寸縮小,這會帶來其他的問題。當元件尺寸縮小,APD性能對光窗尺寸的依賴性提高,這可歸咎於蝕刻檯面邊緣表面態的影響。在本篇論文中,我們進一步展示了採用覆晶接合封裝的背照式結構,該結構最大限度地減少了小尺寸 APD 中的這種現象,從而確保了高速性能。與正照式參考樣品相比,覆晶接合封裝元件進一步顯示響應度(10.7 vs. 7 A/W)、3dB 頻寬(4.1 vs. 3.9 GHz)和飽和電流(4.25 vs. 3.6 mA)的增強。與具有相同主動區光窗尺寸(40 µm)的p-i-n 或正照式參考元件相比,我們覆晶式APD顯示出色的靜態和動態性能,從而帶來前所未有的高速靈敏度(5 µm/sec) 和卓越的4-D FMCW LiDAR影像品質。

    ;So far, avalanche photodiodes(APD) operating at near Geiger-mode have played a vital role for detecting extremely weak light (single or a small number of photons) in variety of applications. For example, single-photon detectors(SPAD), time-of-flight(ToF) or frequency modulated continuous wave(FMCW) Lidar systems and optical time domain reflectormeters(OTDR). To satisfy the requirements of such applications, we need APDs with large window size, moderate bandwidth, high responsivity. However, it’s difficult to design APDs capable of meeting the afore-mentioned performance requirements due to the limitation of gain-bandwidth product(GBP). In this paper, we conquer the GBP bottleneck by using thick absorption layer(2μm) and triple In0.52Al0.48As based multiplication layer. Moreover, the characteristic invariant 3-dB bandwidth in our APDs, from low to an extremely high operation gain, becomes more pronounced with an increase of its active window diameter (40 to 200 μm). This characteristic makes it very attractive for the receiver detecting the extremely weak light in FMCW Lidar applications. Comparison shows that the 200 μm APD exhibits a higher 0.9 Vbr responsivity (15 vs. 7 A/W), larger maximum gain (460 vs. 110), and higher GBP (468 vs. 131 GHz) than does the 40 μm reference sample and can sustain a constant 3-dB bandwidth (1.4 GHz) over a wide range of operation gains (10 to 460). The dependence of the APD performance on the window size can be attributed to the influence of the surface states on the edge of the etched mesa. In this paper, we further demonstrate a backside-illuminated structure with a flip-chip bonding package which minimizes this phenomenon in small APDs ensuring high-speed performance. Compared with the top-illuminated reference samples, the flip-chip bonding packaged device shows a further enhancement of the responsivity (10.7 vs. 7 A/W), 3-dB bandwidth (4.1 vs. 3.9 GHz), and saturation current (4.25 vs. 3.6 mA). The excellent static and dynamic performance of our flip-chip APD in turn leads to an unprecedented high velocity sensitivity (5 μm/sec) and superior quality 4-D FMCW LiDAR images compared to that obtainable with p-i-n-based or top-illuminated reference devices with the same small active window size (40 μm).
    顯示於類別:[電機工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML17檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明