本研究使用整合生理數據分析的VR WarCar訓練系統,探討壓力對認知專注力和穩定性的影響。主要目的是探索高壓訓練環境如何影響認知功能和駕駛表現。通過模擬高壓情境,我們旨在評估反覆暴露於壓力下是否能改善任務表現和壓力管理,這使軍事人員能夠在高壓條件下有效地運作。先前的研究強調了壓力在各種高風險職業中的關鍵作用,如軍事,壓力引起的認知損害和生理反應可能會顯著影響結果。然而,目前的訓練系統在模擬真實壓力源和精確測量其影響方面存在不足。本研究通過利用VR技術創建沉浸式高壓環境,並結合多模態生理數據分析(包括EEG、HRV和眼動追蹤)來填補這一空白。我們的研究涉及一般組和運動組兩組受試者,他們進行了多次訓練。結果表明,通過VR系統反覆暴露於高壓條件下顯著改善了受試者的認知表現和駕駛穩定性。多模態生理信號與主觀壓力評估的數據融合提供了對壓力反應的可靠評估。研究證實了基於VR的訓練系統在提高高壓環境中的表現效果,並提供了壓力訓練對一般人群和專業運動員不同影響的見解。未來的工作將專注於細化訓練方案,並擴展系統在各種高壓職業中的應用。;This study investigates the impact of stress on cognitive focus and stability using a VR WarCar training system integrated with physiological data analysis. The primary objective is to explore how high-pressure training environments influence cognitive functions and driving performance. By simulating high-stress conditions, we aim to evaluate the effectiveness of repeated stress exposure in improving task performance and managing stress that enables Military personnel to perform effectively under high-stress conditions. Previous research has highlighted the critical role of stress in various high-stakes professions, such as the military, where cognitive impairments and physiological responses due to stress can significantly affect outcomes, yet there is a gap in training systems that can simulate real-world stressors and accurately measure their effects. This study addresses this gap by utilizing VR technology to create immersive high-pressure environments and combining it with multimodal physiological data analysis, including EEG, HRV, and eye-tracking. Our study involved two participant groups, general and sports groups, underwent multiple training sessions. Results indicate that repeated exposure to high-stress conditions through the VR system significantly improved participants′ cognitive performance and driving stability. Data fusion of multimodal physiological signals with subjective stress assessments provided a robust evaluation of stress responses. The study demonstrates the effectiveness of the VR-based training system in enhancing performance in high-stress environments and offers insights into the differential impacts of stress training on general individuals and professional athletes. Future work will focus on refining the training protocols and expanding the system′s application to various high-stress professions.