English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41142304      線上人數 : 356
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/95781


    題名: 下垂控制微電網結合智慧型太陽能配電型靜態同步補償器改善電力品質;Droop Controlled Micogrid with Intelligent PV-DSTATCOM for Power Quality Improvement
    作者: 管昭昀;Kuan, Chao-Yun
    貢獻者: 電機工程學系
    關鍵詞: 微電網;下垂控制;電力品質;功率因數校正;智慧型控制;配電型靜態同步補償器;Microgrid;droop control;power quality;power factor correction;intelligent control;DSTATCOM
    日期: 2024-08-07
    上傳時間: 2024-10-09 17:16:23 (UTC+8)
    出版者: 國立中央大學
    摘要: 本論文提出一種儲能系統與基於太陽能光電系統之配電型靜態同步補償器(Photovoltaic Distribution Static Synchronous Compensator, PV-DSTATCOM)組成的下垂控制微電網,由於分散式可再生能源發電系統(DGs)快速發展、感性負載廣泛使用及負載突變,造成電力品質上的問題,例如電流不平衡、電流諧波、功率因數落後等,因此,提出一種新型的PV-DSTATCOM來改善電力品質的問題。
    此外,為了有效改善在負載變化時的虛功率補償暫態響應,首次提出了具有線上訓練能力的派翠勒壤得模糊神經網路(Petri Legendre Fuzzy Neural Network, PLFNN)用於取代傳統的比例積分(Proportional-Integral, PI)控制器,並且本論文詳細推導提出的PLFNN之網路架構和線上學習策略。最後,利用實作及電腦模擬結果驗證DSTATCOM使用所提出的PLFNN控制器於下垂控制微電網中改善電流不平衡、降低電流總諧波失真(Total Harmonic Distortion, THD)、功率因數校正(Power Factor, PF)和改善暫態響應的有效性。
    ;A droop controlled microgrid composed of a battery energy storage system (BESS) and a photovoltaic based distribution static synchronous compensator (PV-DSTATCOM) is developed in this study for the power quality improvement. Owing to the high penetration rate of the renewable energy source-based distributed generators (DGs), extensive usage of the inductive loads, and unexpected load change, the power quality issues, including unbalanced currents, current harmonics, and lagging power factor (PF), have become severe challenges in microgrid. Consequently, a novel control algorithm of PV-DSTATCOM is firstly proposed to overcome the power quality issues. The PV-DSTATCOM owns the droop characteristic and the ability to compensate the reactive power for power quality improvement. Moreover, to effectively improve the transient response of the reactive power compensation and the performance of the PV-DSTATCOM during load variations, an online trained Petri Legendre fuzzy neural network (PLFNN) controller is firstly proposed to replace the conventional proportional-integral (PI) controller. Furthermore, the network structure and the online learning algorithm of the proposed PLFNN are detailedly derived. Finally, the effectiveness of the PV-DSTATCOM using the proposed PLFNN controller in the microgrid to reduce the total harmonic distortion (THD) of the current, correct the PF and compensate the three-phase unbalanced currents is verified by simulation and experimentation.
    顯示於類別:[電機工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML16檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明