English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41142294      線上人數 : 346
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/95785


    題名: 使用 區間二型遞迴模糊類神經網路估 測器 之 非線性時變系統 之 智慧型步階回歸控制;Intelligent Backstepping Control of Nonlinear Time-Varying System with Interval Type-2 Recurrent Fuzzy Neural Network Estimator
    作者: 鄧福欣;Teng, Fu-Hsin
    貢獻者: 電機工程學系
    關鍵詞: 步階回歸 控制;區間二型遞迴模糊神經網路步階回歸控制;區間二型遞迴模糊;區間二型遞迴模糊神經網路步階回歸控制;區間二型遞迴模糊 神經網路;同步磁阻馬達;每安培最大 轉 矩控制;Backstepping control;intelligent backstepping control with interval type-2 recurrent fuzzy neural network;interval type-2 recurrent fuzzy neural network;synchronous reluctant motor;maximum torque per ampere
    日期: 2024-08-07
    上傳時間: 2024-10-09 17:16:39 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究提出了一種使用區間二型遞迴模糊神經網路估測器之智慧型步階回歸控制,能夠修正非線性時變系統固有的非線性和時變控制特性。在區間二型遞迴模糊類神經網路估測器之智慧型步階回歸控制中,設計步階回歸控制法則來穩定閉環控制系統,並使用區間二型遞迴模糊神經網路來估計步階回歸設計中的總集不確定項。最初,非線性步階回歸控制的逐步設計被設定用於追蹤週期性參考軌跡,總集不確定項為保守常數。然而,實際應用通常涉及未知且難以預測的總集不確定項,為解決此問題引入區間二型遞迴模糊神經網路來即時估計總集不確定性。應用李亞普諾夫穩定性方法來確保漸近穩定性,從而製定區間二型遞迴模糊神經網路的線上學習演算法。為主動補償區間二型遞迴模糊神經網路的估計誤差亦提出自適應補償器。最後,本研究包括一個案例研究,展示具有最大每安培扭矩控制的同步磁阻馬達位置伺服驅動器的實驗結果。這些結果旨在驗證所提出的區間二型遞迴模糊神經網路智慧型步階回歸控制的有效性和穩健性。;An intelligent backstepping control with interval type-2 recurrent fuzzy neural network (IBSCIT2RFNN), which is capable of modifying the inherent nonlinear and time-varying control characteristics of a nonlinear time-varying system, is proposed in this research. In the IBSCIT2RFNN, a backstepping control (BSC) law is devised to stabilize the closed-loop control system and the lumped uncertainty in the design of BSC is estimated using an interval type-2 recurrent fuzzy neural network (IT2RFNN). Initially, a step-by-step design of a nonlinear BSC is formulated for tracking periodic reference trajectories, with uncertainties lumped by a conservative constant. However, practical applications often involve unknown and challenging-to-predict lumped uncertainty. To address this, an IT2RFNN is introduced for real-time estimation of the lumped uncertainty. The Lyapunov stability method is applied to ensure asymptotical stability, leading to the formulation of online learning algorithms for the IT2RFNN. In order to proactively compensate the estimation error of the IT2RFNN, an adaptive compensator is also presented. Finally, this research includes a case study presenting experimental results from a synchronous reluctant motor (SRM) position servo drive with maximum torque per ampere (MTPA) control. These results aim to validate the effectiveness and robust qualities of the proposed IBSCIT2RFNN.
    顯示於類別:[電機工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML11檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明