本研究採用顆粒阻尼減振技術應用於偏心轉子傳動系統的動平衡校正,並探討其減振效益。並採用多體動力學(Multi-body Dynamics, MBD)及離散元素法(Discrete Element Method, DEM)耦合的理論,建構出具顆粒阻尼偏心轉子機構系統之MBD-DEM雙向耦合動力模擬分析模型。本研究使用雙面平衡法,平衡轉子系統上的偏心慣性力,並採用顆粒阻尼技術,透過顆粒與腔體之間的碰撞及摩擦,抑制偏心轉子轉動時所產生的振動。研究顯示不論那一種轉速與不論那一種粒徑,皆均具有一定之減振效果,在本研究中轉速600 rpm與粒徑4 mm的組合呈現最佳減振效果,其減振效果可達81%。考慮8孔洞扇形、16孔洞扇形及8孔圓柱形的三種腔體形狀,透過模擬結果的比較,得知8孔洞扇形腔體之減振效果最佳。
關鍵詞:偏心轉子機構、顆粒阻尼器、振動抑制、雙面平衡法、耦合理論、多體動力學與離散元素法。 ;The study applies particle damping technology to eccentric rotor systems and explores its vibration reduction performance. The coupling theory of multi-body dynamics (MBD) and the discrete element method (DEM) is proposed to analyze the dynamic characteristics of eccentric rotor systems with damping particles. This study uses a double-plane balancing method to balance the eccentric inertial forces on the rotor systems and employs granular damping technology to suppress vibrations generated by the rotating eccentric rotor through collisions and friction between the granules and the cavities. Numerical results show that, regardless of the rotational speed or particle size studied here, a certain level of vibration reduction is achieved. In this study, the eccentric rotor system with 4 mm particles under 600 rpm rotational speed exhibits the best vibration reduction effect, achieving up to 81% reduction. Considering three types of cavity patterns—8-hole sector, 16-hole sector, and 8-hole cylindrical cavities—the comparison of simulation results reveals that the 8-hole sector cavity pattern provides the best vibration reduction effect.
Keywords: eccentric rotor mechanism, particle damper, vibration suppression, double-plane balancing method, coupling theory, multi-body dynamics and discrete element method.